摘要:
A SiGe monocrystalline etch-stop material system on a monocrystalline silicon substrate. The etch-stop material system can vary in exact composition, but is a doped or undoped Si1−xGex alloy with x generally between 0.2 and 0.5. Across its thickness, the etch-stop material itself is uniform in composition. The etch stop is used for micromachining by aqueous anisotropic etchants of silicon such as potassium hydroxide, sodium hydroxide, lithium hydroxide, ethylenediamine/pyrocatechol/pyrazine (EDP), TMAH, and hydrazine. These solutions generally etch any silicon containing less than 7×1019 cm−3 of boron or undoped Si1−xGex alloys with x less than approximately 18. Alloying silicon with moderate concentrations of germanium leads to excellent etch selectivities, i.e., differences in etch rate versus pure undoped silicon. This is attributed to the change in energy band structure by the addition of germanium. Furthermore, the nondegenerate doping in the Si1−xGex alloy should not affect the etch-stop behavior. The etch-stop of the invention includes the use of a graded-composition buffer between the silicon substrate and the SiGe etch-stop material. Nominally, the buffer has a linearly-changing composition with respect to thickness, from pure silicon at the substrate/buffer interface to a composition of germanium, and dopant if also present, at the buffer/etch-stop interface which can still be etched at an appreciable rate. Here, there is a strategic jump in germanium and concentration from the buffer side of the interface to the etch-stop material, such that the etch-stop layer is considerably more resistant to the etchant. This process and layer structure allows for an entire range of new materials for microelectronics. The etch-stop capabilities introduce new novel processes and structures such as relaxed SiGe alloys on Si, SiO2, and SiO2/Si. Such materials are useful for future strained Si MOSFET devices and circuits.
摘要:
A semiconductor structure including a uniform etch-stop layer. The uniform etch stop layer has a relative etch rate which is less than approximately the relative etch rate of Si doped with 7×1019 boron atoms/cm3. A method for forming a semiconductor structure includes forming a uniform etch-stop layer providing a handle wafer, and bonding the uniform etch-stop layer to the handle wafer. The uniform etch-stop layer has a relative etch rate which is less than approximately the relative etch rate of Si doped with 7×1019 boron atoms/cm3.
摘要翻译:包括均匀蚀刻停止层的半导体结构。 均匀的蚀刻停止层的相对蚀刻速率小于约7×10 19硼原子/ cm 3的Si的相对蚀刻速率。 一种用于形成半导体结构的方法包括形成均匀的蚀刻停止层,提供处理晶片,并将均匀的蚀刻停止层结合到处理晶片。 均匀的蚀刻停止层的相对蚀刻速率小于约7×10 19个硼原子/ cm 3掺杂的Si的相对蚀刻速率。
摘要:
A SiGe monocrystalline etch-stop material system on a monocrystalline silicon substrate. The etch-stop material system can vary in exact composition, but is a doped or undoped Si1−xGex alloy with x generally between 0.2 and 0.5. Across its thickness, the etch-stop material itself is uniform in composition. The etch stop is used for micromachining by aqueous anisotropic etchants of silicon such as potassium hydroxide, sodium hydroxide, lithium hydroxide, ethylenediamine/pyrocatechol/pyrazine (EDP), TMAH, and hydrazine. For example, a cantilever can be made of this etch-stop material system, then released from its substrate and surrounding material, i.e., “micromachined”, by exposure to one of these etchants. These solutions generally etch any silicon containing less than 7×1019 cm−3 of boron or undoped Si1−xGex alloys with x less than approximately 18. Alloying silicon with moderate concentrations of germanium leads to excellent etch selectivities, i.e., differences in etch rate versus pure undoped silicon. This is attributed to the change in energy band structure by the addition of germanium. Furthermore, the nondegenerate doping in the Si1−xGex alloy should not affect the etch-stop behavior. The etch-stop of the invention includes the use of a graded-composition buffer between the silicon substrate and the SiGe etch-stop material. Nominally, the buffer has a linearly-changing composition with respect to thickness, from pure silicon at the substrate/buffer interface to a composition of germanium, and dopant if also present, at the buffer/etch-stop interface which can still be etched at an appreciable rate. Here, there is a strategic jump in germanium and concentration from the buffer side of the interface to the etch-stop material, such that the etch-stop layer is considerably more resistant to the etchant.
摘要:
In various embodiments, an array of discrete solar cells with associated devices such as bypass diodes is formed over a single substrate. In one instance, a method of forming a solar-cell array with integrated bypass diodes comprising: providing a semiconductor substrate, a first cell comprising a SiGe p-n junction or SiGe p-i-n junction, one or more second cells each comprising a III-V semiconductor p-n junction or III-V semiconductor p-i-n junction; forming a bypass diode that is discrete and laterally separate from its associated solar cell and comprises an unremoved portion of the first cell, the formation comprising removing an unremoved portion of the one or more second cells thereover.
摘要:
The invention provides semiconductor structure comprising a strained Ge channel layer, and a gate dielectric disposed over the strained Ge channel layer. In one aspect of the invention, a strained Ge channel MOSFET is provided. The strained Ge channel MOSFET includes a relaxed SiGe virtual substrate with a Ge content between 50-95%, and a strained Ge channel formed on the virtual substrate. A gate structure is formed upon the strained Ge channel, whereupon a MOSFET is formed with increased performance over bulk Si. In another embodiment of the invention, a semiconductor structure comprising a relaxed Ge channel layer and a virtual substrate, wherein the relaxed Ge channel layer is disposed above the virtual substrate. In a further aspect of the invention, a relaxed Ge channel MOSFET is provided. The method includes providing a relaxed virtual substrate with a Ge composition of approximately 100% and a relaxed Ge channel formed on the virtual substrate.
摘要:
In various embodiments, solar cells include a junction including SiGe, a junction including at least one III-V material, and may be formed on silicon substrates and/or with silicon-based capping layers thereover.
摘要:
A method for minimizing particle generation during deposition of a graded Si.sub.1-xGe.sub.x layer on a semiconductor material includes providing a substrate in an atmosphere including a Si precursor and a Ge precursor, wherein the Ge precursor has a decomposition temperature greater than germane, and depositing the graded Si.sub.1-xGe.sub.x layer having a final Ge content of greater than about 0.15 and a particle density of less than about 0.3 particles/cm.sup.2 on the substrate.
摘要翻译:在半导体材料上沉积梯度Si 1-x Ge x层的过程中使颗粒产生最小化的方法包括在包括Si前体和Ge前体的气氛中提供衬底,其中Ge前体具有分解 温度大于锗烷,并沉积具有大于约0.15的最终Ge含量并且小于约0.3颗粒/ cm 2的颗粒密度的梯度Si 1-x Ge 2层在衬底上 。
摘要:
Semiconductor structures and devices including strained material layers having impurity-free zones, and methods for fabricating same. Certain regions of the strained material layers are kept free of impurities that can interdiffuse from adjacent portions of the semiconductor. When impurities are present in certain regions of the strained material layers, there is degradation in device performance. By employing semiconductor structures and devices (e.g., field effect transistors or “FETs”) that have the features described, or are fabricated in accordance with the steps described, device operation is enhanced.
摘要:
Solar cells include a substrate consisting essentially of silicon, a first junction disposed over the substrate, the first junction comprising at least one III-V material and having a threading dislocation density of less than approximately 107 cm−2, and a cap layer disposed over the first junction, the cap layer comprising silicon.