摘要:
Devices, systems and methods for delivering one or more drugs to one or more internal body locations (such as the cerebrospinal fluid) are disclosed. In various aspects, the systems and methods may involve catheters having infusion sections with permeable membranes that develop significant back pressure to enhance uniform delivery of the drug over an infusion section; catheters that have two or more infusion sections spaced apart along the length of the same catheter, catheters that include two or more infusion sections serviced by independent lumens (such that, e.g., different drug solutions can be delivered to the different infusion sections); implantable drug delivery systems with pumps and multiple reservoirs from which drugs can be delivered; systems that are capable of delivering drug solutions with selected densities; etc. Methods for treating diseases, including pain and spasticity are also discussed, as well as methods for screening patients and optimizing therapies. In addition, methods for delivering a drug to a brain through a spinal canal are described.
摘要:
Systems and methods for coordinated delivery of a therapeutic agent and low (less than about 20 Hz) and high (greater than about 50 Hz) frequency stimulation therapy are described. The systems include a control unit for coordinating therapy delivery between an infusion device and a pulse generator, such that a therapeutic agent is administered at a predetermined time relative to application of either low frequency or high frequency stimulation. For example, the control unit may instruct the infusion device to deliver therapeutic agent at a predetermined time prior to delivery of low frequency stimulation. Systems that include more than one infusion device or an infusion pump capable of delivering more than one therapeutic agent are also described.
摘要:
Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
摘要:
Implantable medical devices (IMDS) having anti-infective properties are described. Anti-infective agents are disposed in, on, or about at least a portion of a surface of the medical device. The anti-infective agents are disposed in or on a vehicle, which may be in the form of a coating layer or covering. The vehicle may be biodegradable so that, over time, the anti-infective agent is removed from a tissue location into which the device is implanted, reducing the likelihood that microorganisms resistant to the anti-infective agent will develop. IMDs having an anti-infective agent and an anti-activity agent disposed therein, thereabout, or thereon are also described. The anti-activity agent interferes with the activity of the anti-infective agent, may be released from a surface at the IMD at a time when activity of the anti-infective agent is no longer desired, and may reduce the likelihood that microorganisms resistant to the anti-infective agent will develop.
摘要:
Devices, systems and methods for delivering one or more drugs to one or more internal body locations (such as the cerebrospinal fluid) are disclosed. In various aspects, the systems and methods may involve catheters having infusion sections with permeable membranes and one or more tracking elements that may be used to place the infusions sections on the catheters in selected locations such as the spinal region.
摘要:
Enhanced therapies for treating pain are described. The therapies include subcutaneous stimulation of tissue in proximity to a source of pain at low frequencies (less than about 20 Hz) and high frequencies (greater than about 50 Hz). The subcutaneous stimulation may be applied in proximity to a structure in the back, such as discs, facet joints, nerve roots or ganglions, sympathetic chain, ligaments, muscles, and the like. Subcutaneous stimulation at high and low frequencies applied in combination with epidural stimulation is also described.
摘要:
An implantable drug delivery device comprising a microencapsulated drug contained within at least one capsule, a carrier fluid that will dissolve the drug when freed from the capsule, a drug releaser for freeing the microencapsulated drug from the capsule, a reservoir in which the carrier fluid dissolves the drug, and an electromechanical pump to convey the dissolved drug to a catheter, through which the drug is delivered to a target site within a patient.
摘要:
Enhanced therapies for treating pain are described. The therapies include subcutaneous stimulation of tissue in proximity to a source of pain at low frequencies (less than about 20 Hz) and high frequencies (greater than about 50 Hz). The therapies further include administering a pain treating agent at a predetermined time relative to application of the high or low frequency stimulation. Delivery of the pain treating agent via an implantable infusion system is described. Coordination of output of an infusion device and a pulse generator to provide coordinated therapy is also discussed.
摘要:
In various aspects, systems and methods involve catheters having infusion sections with permeable membranes that develop significant back pressure to enhance uniform delivery of the drug over an infusion section; catheters that have two or more infusion sections spaced apart along the length of the same catheter, catheters that include two or more infusion sections serviced by independent lumens (such that, e.g., different drug solutions can be delivered to the different infusion sections); implantable drug delivery systems with pumps and multiple reservoirs from which drugs can be delivered; systems that are capable of delivering drug solutions with selected densities; etc. Methods for delivering a drug to a brain through a spinal canal include delivering hypobaric solutions containing the drug.
摘要:
An in-vitro model apparatus of a human spine and methods for detecting and analyzing substance distribution patterns therein. In one embodiment, the model apparatus includes a column body defining a passageway that substantially mimics the size, shape, and structure of an adult human spinal canal. Also included is a cord structure that may be located and anchored within the passageway. The cord structure substantially mimics the size, shape, and structure of an adult human spinal cord. For example, the cord structure may include connecting elements that resemble nerve roots, dentate ligaments, and the septum posticum of a human spine. The passageway of the model apparatus may be filled with a first fluid that simulates cerebro-spinal fluid (CSF), and a second fluid containing a drug (or simulated drug) may be introduced into the passageway, after which the drug's distribution within the passageway may be analyzed.