摘要:
Example embodiments relate to a heterojunction diode, a method of manufacturing the heterojunction diode, and an electronic device including the heterojunction diode. The heterojunction diode may include a first conductive type non-oxide layer and a second conductive type oxide layer bonded to the non-oxide layer. The non-oxide layer may be a Si layer. The Si layer may be a p++ Si layer or an n++ Si layer. A difference in work functions of the non-oxide layer and the oxide layer may be about 0.8-1.2 eV. Accordingly, when a forward voltage is applied to the heterojunction diode, rectification may occur. The heterojunction diode may be applied to an electronic device, e.g., a memory device.
摘要:
Example embodiments relate to a heterojunction diode, a method of manufacturing the heterojunction diode, and an electronic device including the heterojunction diode. The heterojunction diode may include a first conductive type non-oxide layer and a second conductive type oxide layer bonded to the non-oxide layer. The non-oxide layer may be a Si layer. The Si layer may be a p++ Si layer or an n++ Si layer. A difference in work functions of the non-oxide layer and the oxide layer may be about 0.8-1.2 eV. Accordingly, when a forward voltage is applied to the heterojunction diode, rectification may occur. The heterojunction diode may be applied to an electronic device, e.g., a memory device.
摘要:
Bipolar memory cells and a memory device including the same are provided, the bipolar memory cells include two bipolar memory layers having opposite programming directions. The two bipolar memory layers may be connected to each other via an intermediate electrode interposed therebetween. The two bipolar memory layers may have the same structure or opposite structures.
摘要:
In a method of operating a semiconductor device, a resistance value of a variable resistance element is changed from a first resistance value to a second resistance value by applying a first voltage to the variable resistance element; and a first current that flows through the variable resistance element is sensed. A second voltage for changing the resistance value of the variable resistance element from the second resistance value to the first resistance value is modulated based on a dispersion of the first current, and the first voltage is re-applied to the variable resistance element based on a dispersion of the first current.
摘要:
Nonvolatile memory elements and memory devices including the nonvolatile memory elements. A nonvolatile memory element may include a memory layer between two electrodes, and the memory layer may have a multi-layer structure. The memory layer may include a base layer and an ionic species exchange layer and may have a resistance change characteristic due to movement of ionic species between the base layer and the ionic species exchange layer. The ionic species exchange layer may have a multi-layer structure including at least two layers. The nonvolatile memory element may have a multi-bit memory characteristic due to the ionic species exchange layer having the multi-layer structure. The base layer may be an oxygen supplying layer, and the ionic species exchange layer may be an oxygen exchange layer.
摘要:
Nonvolatile memory elements may include a first electrode, a second electrode, a first buffer layer, a second buffer layer and a memory layer. The memory layer may be between the first and second electrodes. The first butter layer may be between the memory layer and the first electrode. The second buffer layer may be between the memory layer and the second electrode. The memory layer may be a multi-layer structure including a first material layer and a second material layer. The first material layer may include a first metal oxide which is of the same group as, or a different group from, a second metal oxide included in the second material layer.
摘要:
Example embodiments, relate to a non-volatile memory element and a memory device including the same. The non-volatile memory element may include a memory layer having a multi-layered structure between two electrodes. The memory layer may include first and second material layers and may show a resistance change characteristic due to movement of ionic species therebetween. The first material layer may be an oxygen-supplying layer. The second material layer may be an oxide layer having a multi-trap level.
摘要:
A method of driving a nonvolatile memory device including applying a reset voltage to a unit memory cell, reading a reset current of the unit memory cell, confirming whether the reset current is within a first current range, if the reset current is not within the first current range, changing the reset voltage and applying a changed reset voltage or applying again the reset voltage to the unit memory cell after applying a set voltage to the unit memory cell, if the reset current is within the first current range, confirming whether a difference between the present reset current and an immediately previous set current is within a second current range, and, if the difference is not within the second current range, applying the reset voltage or applying again the reset voltage to the unit memory cell after applying a set voltage to the unit memory cell.
摘要:
A method of operating a semiconductor device that includes a variable resistance device, the method including applying a first voltage to the variable resistance device so as to change a resistance value of the variable resistance device from a first resistance value to a second resistance value that is different from the first resistance value; sensing first current flowing through the variable resistance device to which the first voltage is applied; determining whether the first current falls within a predetermined range of current; and if the first current does not fall within the first range of current, applying an additional first voltage that is equal to the first voltage to the variable resistance device.
摘要:
According to an example embodiment, a method of operating a semiconductor device includes applying a first voltage to the variable resistance device so as to change a resistance value of the variable resistance device from a first resistance value to a second resistance value that is different from the first resistance value, sensing first current flowing through the variable resistance device to which the first voltage is applied, determining a second voltage used to change the resistance value of the variable resistance device from the second resistance value to the first resistance value based on a distribution of the sensed first current, and applying the determined second voltage to the variable resistance device.