Abstract:
The present invention relates to a heterojunction semiconductor substrate having excellent dielectric properties, a method of manufacturing the same, and an electronic device using the same. The present invention provides a heterojunction semiconductor substrate with improved interlayer adhesion, low leakage current, and excellent dielectric properties that maintain strength in a ferroelectric fatigue experiment by interposing a metal layer and a conductive metal oxide layer on a semiconductor substrate to form an epitaxial oxide thin film layer composed of perovskite piezoelectric oxide. The heterojunction semiconductor substrate can be applied to sensors, actuators, transducers, or MEMS devices that use the high functionality of the high-quality epitaxial oxide thin film layer, including applications in electronic and optical devices.
Abstract:
The present invention relates to a transparent anode active material having excellent light transmittance and electrical conductivity characteristics and a manufacturing method thereof, and a lithium ion battery and an all-solid-state lithium thin-film battery based on the same and having excellent charge/discharge capacity and charge/discharge rate, wherein the transparent anode active material according to the present invention is characterized by comprising a material of the following Chemical Formula 1: AgxSiOyN wherein x is 0
Abstract:
Disclosed is a curved piezoelectric device maximizing an electrical potential of the piezoelectric material corresponding to an external mechanical stress. The curved piezoelectric device includes: a curved substrate; and a piezoelectric material provided on one surface or both surfaces of the curved substrate, wherein when a stress is applied, a neutral plane in which a compressive stress and a tensile stress are balanced is located in the curved substrate, wherein the location of the neutral plane is determined by y1 and y2 of Equation 1 or 2 below, and wherein the location of the neutral plane is controllable by adjusting a thickness (d), a sectional area (A) and a Young's modulus (E) of each of the curved substrate and the piezoelectric material: wherein y 1 = E 2 d 2 ( d 1 + d 2 ) 2 ( E 1 d 1 + E 2 d 2 ) , y 2 = E 1 d 1 ( d 1 + d 2 ) 2 ( E 1 d 1 + E 2 d 2 ) and Equation 1 y 1 = E 2 A 2 ( A 1 + A 2 ) 2 ( E 1 A 1 + E 2 A 2 ) , y 2 = E 1 A 1 ( A 1 + A 2 ) 2 ( E 1 A 1 + E 2 A 2 ) . Equation 2
Abstract:
Disclosed is a method of manufacturing an epitaxy oxide thin film of enhanced crystalline quality, and an epitaxy oxide thin film manufactured thereby according to the present invention. With respect to the manufacturing method of the epitaxy oxide thin film, which epitaxially grows an orientation film with an oxide capable of being oriented to (001), (110), and (111) on a single crystal Si substrate, because time required for raising a temperature of the orientation film up to an annealing temperature at room temperature is extremely minimized, thermal stress arising from the large difference in thermal expansion coefficients between the substrate and the orientation film is controlled, so crystalline quality of the epitaxy oxide thin film can be enhanced. Moreover, various epitaxial functional oxides are integrated into the thin film of enhanced crystalline quality so that a novel electronic device can be embodied.
Abstract:
A thermoelectric composite material includes MXene inserted at a boundary of a crystal grain consisting of a thermoelectric material. Accordingly, the thermoelectric composite material may have a reduced thermal conductivity and an increased electrical conductivity. Furthermore, a mechanical property of the thermoelectric composite material may be improved. Thus, the thermoelectric composite material may improve a thermoelectric ability of a thermoelectric module.
Abstract:
Disclosed is a manganese tin oxide-based transparent conducting oxide (TCO) with an optimized composition, which has low surface roughness, low sheet resistance and high transmittance even when deposited at room temperature, a multilayer transparent conductive film using the same and a method for fabricating the same. The manganese tin oxide-based transparent conducting oxide has a composition of MnxSn1-xO (0
Abstract translation:公开了一种具有优化组成的锰锡氧化物基透明导电氧化物(TCO),其即使在室温下沉积时也具有低的表面粗糙度,低的薄层电阻和高透射率,使用其的多层透明导电膜和 制作相同。 锰氧化锡系透明导电氧化物具有Mn x Sn 1-x O(0
Abstract:
Proposed is a self-resonance tuning piezoelectric energy harvester with broadband frequency, including: a piezoelectric beam which is extended along a horizontal direction; a fixing member which fixes opposite ends of the piezoelectric beam; and a mobile mass which the piezoelectric beam passes through, and which is capable of self-movement along the piezoelectric beam through a through-hole which has a free space in addition to a space which the piezoelectric beam passes through, wherein as the mobile mass moves to a position of the piezoelectric beam, generated displacement of a piezoelectric beam is increased, and as the generated displacement becomes greater than the free space, the mobile mass is fixed to a position of a piezoelectric beam at which resonance will occur.
Abstract:
A method of manufacturing an electrode layer and a method of manufacturing a capacitor using the same are provided. The method of manufacturing the electrode layer includes performing a first sub-cycle sequentially providing a tin precursor and an oxygen source on a substrate, performing a second sub-cycle sequentially providing a tin precursor, a tantalum precursor, and an oxygen source on the substrate on which the first sub-cycle is performed, and repeating a cycle including the first sub-cycle and the second sub-cycle to form a tantalum-doped tin oxide layer on the substrate. A tantalum concentration in the tantalum-doped tin oxide layer is determined by the tin precursor provided in the second sub-cycle.
Abstract:
The present disclosure relates to a paste for ohmic contact to p-type semiconductor, including a metal oxide and a binder, wherein the metal oxide is a rhenium oxide or a molybdenum oxide.
Abstract:
A cathode thin film for a lithium secondary cell, which uses a cathode active material substituting Sn for Mn in lithium manganese oxide, has a high discharge capacity and an improved cycle property.