摘要:
A mass analysis magnet assembly (16) is provided for use in an ion implanter (10), comprising: (i) a magnet (44) for mass analyzing an ion beam (15) output by an ion source (14), the magnet providing an interior region (49) through which the ion beam passes; and (ii) at least one strike plate (48) in part forming an outer boundary of the interior region (49). The at least one strike plate is comprised of an isotopically pure carbon-based material. The isotopically pure carbon-based material, preferably by mass greater than 99% carbon C-12, prevents neutron radiation when impacted by deuterons extracted from the ion source (14). The strike plate (48) may comprise an upper layer (56) of isotopically pure carbon C-12 isotope positioned atop a lower substrate (54).
摘要:
An ion implanter including a time of flight energy measurement apparatus for measuring and controlling the energy of an ion beam includes an ion source for generating the ion beam, an ion acceleration assembly for accelerating the beam resulting in the beam comprising a series of ion pulses having a predetermined frequency and beam forming and directing structure for directing the ion beam at workpieces supported in an implantation chamber of the implanter. The time of flight energy measurement apparatus includes spaced apart first and second sensors, timing circuitry and conversion circuitry. The time of flight energy measurement apparatus measures an average kinetic energy of an ion included in a selected ion pulse of the ion beam. The first sensor and a second sensor are disposed adjacent the ion beam and spaced a predetermined distance apart, the second sensor being downstream of the first sensor. The first sensor generates a signal when an ion pulse of the ion beam passes the first sensor and the second sensor generates a signal when an ion pulse of the ion beam passes the second sensor. The timing circuitry of the energy measurement apparatus is electrically coupled to the first and second sensors and determines an elapsed time, t, for the selected ion pulse to traverse the predetermined distance between the first and second sensors. The timing circuitry calculates an average number of ion pulses, N, in the ion beam between the first and second sensors based on the approximation of the ion beam energy and calculates an offset time, t(offset), for the selected ion pulse using the formula, t(offset)=N.times.T. The timing circuitry than determines the elapsed time, t. The conversion circuitry converts the elapsed time, t, for the selected ion pulse into a measure of the energy of the ion beam.
摘要:
Methods of ion implantation and ion sources used for the same are provided. The methods involve generating ions from a source feed gas that comprises multiple elements. For example, the source feed gas may comprise boron and at least two other elements (e.g., XaBbYc). The use of such source feed gases can lead to a number of advantages over certain conventional processes including enabling use of higher implant energies and beam currents when forming implanted regions having ultra-shallow junction depths. Also, in certain embodiments, the composition of the source feed gas may be selected to be thermally stable at relatively high temperatures (e.g., greater than 350° C.) which allows use of such gases in many conventional ion sources (e.g., indirectly heated cathode (IHC), Bernas) which generate such temperatures during use.
摘要:
An integrated RF amplifier and resonator is provided for use with an ion accelerator. The amplifier includes an output substantially directly coupled with a resonator coil. The amplifier output may be coupled capacitively or inductively. In addition, an apparatus is provided for accelerating ions in an ion implanter. The apparatus comprises an amplifier with an RF output, a tank circuit with a coil substantially directly coupled to the RF output of the amplifier, and an electrode connected to the coil for accelerating ions. Also provided is a method for coupling an RF amplifier with a resonator in an ion accelerator. The method comprises connecting the RF output of the amplifier to a coupler, and locating the coupler proximate the coil, thereby substantially directly coupling the RF output of the amplifier with the resonator coil.
摘要:
A method and apparatus are disclosed for accelerating ions in an ion implantation system. An ion accelerator is provided which comprises a plurality of energizable electrodes energized by a variable frequency power source, in order to accelerate ions from an ion source. The variable frequency power source allows the ion accelerator to be adapted to accelerate a wide range of ion species to desired energy levels for implantation onto a workpiece, while reducing the cost and size of an ion implantation accelerator.
摘要:
A microchannel plate for detecting neutrons includes a hydrogen-rich polymer substrate that defines a plurality of channels extending from a top surface of the substrate to a bottom surface of the substrate, where neutrons interact with the plurality of channels to generate at least one secondary electron. A top electrode is positioned on the top surface of the substrate and a bottom electrode is positioned on the bottom surface of the substrate. A resistive layer is formed over an outer surface of the plurality of channels that provides ohmic conduction with a resistivity that is substantially constant. An emissive layer is formed over the resistive layer. Neutron interaction products interact with the plurality of channels defined by the substrate and the emissive films to generate secondary electrons that cascade within the plurality of channels to provide an amplified signal related to the detection of neutrons.
摘要:
An architecture for a ribbon ion beam ion implanter system is disclosed. In one embodiment, the architecture includes an acceleration/deceleration parallelizing lens system for receiving a fanned ribbon ion beam and for at least parallelizing (and perhaps also accelerate or decelerate) the fanned ribbon ion beam into a substantially parallel ribbon ion beam, and an energy filter system downstream from the acceleration/deceleration parallelizing lens system and prior to a work piece to be implanted by the substantially parallel ribbon ion beam. The acceleration/deceleration parallelizing lens system includes lenses for at least parallelizing (and perhaps also accelerate or decelerate) the fanned ribbon ion beam and acceleration/deceleration lenses for accelerating or decelerating the substantially parallel ribbon ion beam. The parallelizing lens allows delivery of a high current ribbon ion beam to the work piece with energy that can extend down to as low as approximately 200 eV. The energy filter system provides a substantially parallel ribbon ion beam that is substantially free of energy contamination.
摘要:
An ion buncher stage for a linear accelerator system is disclosed for bunching ions in an ion implantation system. The ion buncher stage may be employed upstream of one or more accelerating stages such that the loss of ions in the linear accelerator system is reduced. The invention further includes an asymmetrical double gap buncher stage, as well as a slit buncher stage for further improvement of ion implantation efficiency. Also disclosed are methods for accelerating ions in an ion implanter linear accelerator.
摘要:
An electrostatic quadrupole lens assembly (60) is provided for an ion implanter (10) having an axis (86) along which an ion beam passes, comprising: (i) four electrodes (84a-84d) oriented radially outward from the axis (86), approximately 90° apart from each other, such that a first pair of electrodes (84a and 84c) oppose each other approximately 180° apart, and a second pair of electrodes (84b and 84d) also oppose each other approximately 180° apart; (ii) a housing (62) having a mounting surface (64) for mounting the assembly (60) to the implanter, the housing at least partially enclosing the four electrodes (84a-84d); (iii) a first electrical lead (104) for providing electrical power to the first pair of electrodes (84a and 84c); (iv) a second electrical lead (108) for providing electrical power to the second pair of electrodes (84b and 84d); and (v) a plurality of electrically insulating members (92) formed of a glass-like material, comprising at least a first electrically insulating member for attaching the first pair of electrodes (84a and 84c) to the housing, and at least a second electrically insulating member for attaching the second pair of electrodes (84b and 84d) to the housing. The plurality of electrically insulating members (92) are preferably comprised of quartz (SiO2), or a heat resistant and chemical resistant glass material such as Pyrex®. The members (92) resist accumulation of material such as graphite sputtered off of the electrodes (84a-84d) by the ion beam, thus reducing the occurrence of high voltage breakdown and electrical current breakdown.
摘要:
A microchannel plate for detecting neutrons includes a hydrogen-rich polymer substrate that defines a plurality of channels extending from a top surface of the substrate to a bottom surface of the substrate, where neutrons interact with the plurality of channels to generate at least one secondary electron. A top electrode is positioned on the top surface of the substrate and a bottom electrode is positioned on the bottom surface of the substrate. A resistive layer is formed over an outer surface of the plurality of channels that provides ohmic conduction with a resistivity that is substantially constant. An emissive layer is formed over the resistive layer. Neutron interaction products interact with the plurality of channels defined by the substrate and the emissive films to generate secondary electrons that cascade within the plurality of channels to provide an amplified signal related to the detection of neutrons.