摘要:
A compound semiconductor device having mesa-shaped element region, and excellent characteristics are provided. The compound semiconductor device has: an InP substrate; an epitaxial lamination mesa formed above the InP substrate and including a channel layer, a carrier supply layer above the channel layer and a contact cap layer above the carrier supply layer; ohmic source electrode and drain electrode formed on the cap layer; a recess formed by removing the cap layer between the source and drain electrodes, and exposing the carrier supply layer; an insulating film formed on the cap layer and retracted from an edge of the cap layer away from the recess; a gate electrode extending from the carrier supply layer in the recess to outside of the mesa; and air gap formed by removing side portion of the channel layer facing the gate electrode outside the mesa.
摘要:
A method for manufacturing a compound semiconductor device forms an EB resist layer on first SiN film, performs EB exposure at high dose for recess forming opening and at low dose for eaves removing opening, develops the high dose EB resist pattern to etch the first SiN film, selectively etches the cap layer to form a recess wider than the opening of the first SiN film leaving eaves of SiN, develops the low dose EB resist pattern to form the eaves removing opening, etches the first SiN film to extinguish the eaves, forms second SiN film on the exposed surface, forms a resist pattern having a gate electrode opening on the second SiN film to etch the second SiN film, forms a metal layer to form a gate electrode by lift-off. The SiN film in eaves shape will not be left.
摘要:
A game device includes a packet processing section that processes a packet that is transferred between the game device and another game device via a network, a game calculation section that performs a game calculation process based on data transferred using a packet, and an image generation section that generates an image based on a result of the game calculation process. The game calculation section performs a game sequence process as the game calculation process in each game sequence interval. A packet that is transferred between the game device and the other game device includes a packet ID that specifies the type of data transferred using the packet, and an interval ID that specifies the game sequence interval that utilizes data transferred using the packet. The packet processing section compares the interval ID included in a received packet with the interval ID of a current game sequence interval. The game calculation section performs the game calculation process based on data included in a packet when the interval ID included in the packet coincides with the interval ID of the current game sequence interval.
摘要:
A semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer formed in contact with the first semiconductor layer, and a third semiconductor layer of a second conductivity type formed in contact with the second semiconductor layer, the first semiconductor layer provided with a first semiconductor region at a given distance from an interface between the first semiconductor layer and the second semiconductor layer, and an impurity concentration of the first semiconductor region higher than an impurity concentration of the first semiconductor layer except where the first semiconductor region is formed.
摘要:
A semiconductor device comprises a buffer layer 16 of an i-InAlAs layer formed over an SI-InP substrate 14, insulating films 24, 36 of BCB formed over the buffer layer 16, and a coplanar interconnection including a signal line 52 and ground lines 54 formed over the insulating film 36, a cavity 46 is formed in the SI-InP substrate 14, the buffer layer 16 and the insulating film below the signal line 52, and pillar-shaped supports in the cavity 46 support the insulating films 34, 36 which are the ceiling of the cavity 46.
摘要:
A semiconductor apparatus includes: a semiconductor apparatus includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type; and a third semiconductor layer of the first conductivity type, wherein: the second semiconductor layer is formed between the first and third semiconductor layers, and the first and second semiconductor layers are in contact with each other; and a first energy level at a bottom edge of a conduction band of the first semiconductor layer is lower than a second energy level at a top edge of a valence band of the second semiconductor layer, and the second energy level at the top edge of the valence band of the second semiconductor layer is substantially the same as a third energy level at a bottom edge of a conduction band of the third semiconductor layer.
摘要:
A method for forming a high-K dielectric film on a silicon substrate includes the steps of processing a surface of the silicon substrate with a diluted hydrofluoric acid, conducting nucleation process of HfN, after the step of processing with the diluted hydrofluoric acid, by supplying a metal organic source containing Hf and nitrogen to the surface of said silicon substrate, and forming an Hf silicate film by a CVD process, after the step of nucleation, by supplying a metal organic source containing Hf and a metal organic source containing Si to the surface of the silicon substrate.
摘要:
Disclosed is a memory cell array including: word lines and first and second bit lines respectively connected to memory cells, wherein each memory cell includes a MOS transistor and a switching element formed inside a contact hole, the switching element includes first and second conductive layers and a gap in which a resistance value is changed by applying a predetermined voltage, each word line is connected to a gate electrode, each first bit line is connected to a second electrode, each second bit line is connected to the second conductive layer, and data is written by supplying a write voltage to the first bit line connected to the selected memory cell and specifying the word line connected to the memory cell, and data is read by supplying a read voltage to the first bit lines connected to the memory cell and specifying the word line connected to the memory cells.
摘要:
A nanogap switching element is equipped with an inter-electrode gap portion including a gap of a nanometer order between a first electrode and a second electrode. A switching phenomenon is caused in the inter-electrode gap portion by applying a voltage between the first and second electrodes. The nanogap switching element is shifted from its low resistance state to its high resistance state by receiving a voltage pulse application of a first voltage value, and shifted from its high resistance state to its low resistance state by receiving a voltage pulse application of a second voltage value lower than the first voltage value. When the nanogap switching element is shifted from the high resistance state to the low resistance state, a voltage pulse of an intermediate voltage value between the first and second voltage values is applied thereto before the voltage pulse application of the second voltage value thereto.