摘要:
A turbine engine component includes at least one treated surface wherein the treated surface has a surface roughness (Ra) of less than 12 microinches; and a hard coating disposed on the superfinished surface, wherein the hard coating is a nitride and/or a carbide material at a thickness of less than 50 microns formed using electron beam physical vapor deposition, cathodic arc evaporation, or magnetron sputtering. disclosed are methods for substantially preventing micropitting on a surface of a turbine engine component.
摘要:
Disclosed herein is an heat transfer device that includes a shell; the shell being an enclosure that prevents matter from within the shell from being exchanged with matter outside the shell; the shell having an outer surface and an inner surface; and a particle layer disposed on the inner surface of the shell; the particle layer having a thickness effective to enclose a region for transferring a fluid between opposing faces; the particle layer including a first layer and a second layer; the second layer being disposed upon the first layer; the first layer having average particle sizes of about 10 to about 10,000,000 nanometers; the second layer having average particle sizes of about 10 to about 10,000 nanometers.
摘要:
Disclosed herein is a heat transfer device that includes a shell; the shell being an enclosure that prevents matter from within the shell from being exchanged with matter outside the shell during the operation of the heat transfer device; the shell having an outer surface and an inner surface; and a porous layer disposed on the inner surface of the shell; the porous particle layer having a thickness effective to enclose a vapor space between opposing faces; the vapor space being effective to provide a passage for the transport of a fluid; the heat transfer device having a thermal conductivity of greater than or equal to about 10 watts per meter-Kelvin and a coefficient of thermal expansion that is substantially similar to that of a semiconductor.
摘要:
An article and method of forming the article is disclosed. The article includes a heat source, a substrate, and a thermal interface element having a plurality of freestanding nanosprings disposed in thermal communication with the substrate and the heat source. The nanosprings of the article include at least one inorganic material and also at least 50% of the nanosprings have a thermal conductivity of at least 1 watt/mK per nano spring.
摘要:
In one aspect, the present invention provides a subsea separation vessel for the separation of a mixture comprising oil and water comprising (a) at least one inlet for introducing a oil-water mixture; (b) a flow path for conducting the oil-water mixture; (c) at least one oil-water separation structure; and (d) at least one fluid outlet. The oil-water separation structure includes a multifunctional surface. The oil-water separation structure is located within the flow path and wherein the multifunctional surface is superhydrophobic with respect to water, and either oleophilic or superoleophilic with respect to oil. A method for separating oil from an oil-water mixture is also provided.
摘要:
An article including a metallic substrate is presented. The article further includes a sacrificial layer disposed on a surface of the substrate and an anti-fouling layer disposed on the sacrificial layer. The anti-fouling layer includes a metal-polymer composite. An article including an anti-fouling layer having a nitride is also presented.
摘要:
A method of coating a surface, preparing a doped metal-ion precursor solution for coating, and an article including a component coated by the described method are disclosed. The method of coating includes applying a fluoro-silane doped metal-ion precursor solution on the surface to form a coated surface. The metal-ion precursor solution includes greater than about 0.6 molar percent concentration of a metal-ion precursor in a solvent comprising an alcohol. The method of preparing the doped metal-ion precursor solution includes dissolving a metal-ion precursor in a solvent comprising an alcohol at a temperature greater than about 100° C. and refluxing at a temperature greater than about 150° C. such that the concentration of metal-ion precursor in the solution is greater than 0.6 molar percent of the solution, and adding a fluoro-silane to the metal-ion precursor solution.
摘要:
This disclosure details methods and techniques for inhibiting natural gas hydrate formation in gas conduits. In one embodiment, an article is provided which comprises (a) a gas conduit defining a gas flow channel; (b) an interior surface of the gas conduit; (c) a hydrate inhibiting coating on the interior surface, wherein the coating comprises: (i) component A, a one- or two-part room temperature vulcanizable polyorganosiloxane composition comprising a surface-treated filler, a condensation catalyst, and a crosslinking agent; and any reaction products thereof; and optionally (ii) component B, a hydrate release-enhancing proportion of at least one polyorganosiloxane comprising one or more silanol or alkoxy-silyl groups and comprising from about 10 weight percent to about 85 weight percent of at least one hydroxy-terminated or alkoxy-terminated polyoxyalkylenealkyl radical; and optionally (iii) any reaction products thereof.
摘要:
A method of coating a surface, preparing a doped metal-ion precursor solution for coating, and an article including a component coated by the described method are disclosed. The method of coating includes applying a fluoro-silane doped metal-ion precursor solution on the surface to form a coated surface. The metal-ion precursor solution includes greater than about 0.6 molar percent concentration of a metal-ion precursor in a solvent comprising an alcohol. The method of preparing the doped metal-ion precursor solution includes dissolving a metal-ion precursor in a solvent comprising an alcohol at a temperature greater than about 100° C. and refluxing at a temperature greater than about 150° C. such that the concentration of metal-ion precursor in the solution is greater than 0.6 molar percent of the solution, and adding a fluoro-silane to the metal-ion precursor solution.
摘要:
This disclosure details methods and techniques for inhibiting natural gas hydrate formation in gas conduits. In one embodiment, an article is provided which comprises (a) a gas conduit defining a gas flow channel; (b) an interior surface of the gas conduit; (c) a hydrate inhibiting coating on the interior surface, wherein the coating comprises: (i) component A, a one- or two-part room temperature vulcanizable polyorganosiloxane composition comprising a surface-treated filler, a condensation catalyst, and a crosslinking agent; and any reaction products thereof; and optionally (ii) component B, a hydrate release-enhancing proportion of at least one polyorganosiloxane comprising one or more silanol or alkoxy-silyl groups and comprising from about 10 weight percent to about 85 weight percent of at least one hydroxy-terminated or alkoxy-terminated polyoxyalkylenealkyl radical; and optionally (iii) any reaction products thereof.