摘要:
A method is described for manufacturing a multilevel metal interconnects. The method comprises the steps of providing a substrate and then forming a wire on the substrate. A dielectric layer is formed on the substrate and the wire and a protective layer is formed on the dielectric layer. An opening is formed by patterning the protective layer and the dielectric layer and a barrier layer is formed on the protective layer and in the opening. A copper layer is formed on the barrier layer and fills the opening. A portion of the copper layer and the barrier layer are removed by chemical-mechanical polishing.
摘要:
A method of fabricating a copper capping layer. A silicon rich nitride layer is formed on an exposed copper layer. Since the silicon rich nitride layer has more dangling bonds inside, the silicon in the silicon rich nitride layer easily reacts with the copper and a copper silicide layer is formed between the copper and the silicon rich nitride layer. Therefore, adhesion of the copper and the silicon rich nitride layer can be improved.
摘要:
A method for forming an inter-metal dielectric layer without voids therein is described. Wiring lines are formed on a provided substrate. Each of the wiring lines comprises a protective layer thereon. A liner layer is formed over the substrate and over the wiring lines. A fluorinated silicate glass (FSG) layer is formed on the liner layer by using high density plasma chemical vapor deposition (HDPCVD). A thickness of the FSG layer is about 0.9-1 times a thickness of the wiring lines. A cap layer is formed on the FSG layer using HDPCVD. A thickness of the cap layer is about 0.2-0.3 times a thickness of the wiring lines. An oxide layer is formed on the cap layer to achieve a predetermined thickness. A part of the dielectric layer is removed to obtain a planarized surface.
摘要:
The present invention provides a method of forming an undoped silicate glass layer on a semiconductor wafer by performing a high density plasma chemical vapor deposition process. The semiconductor wafer being positioned in a deposition chamber. The method comprises forming the undoped silicate glass layer by performing the high density plasma chemical vapor deposition process in the deposition chamber under the following conditions: an argon (Ar) flow rate of 40 to 70 sccm (standard cubic centimeter per minute); an oxygen (O.sub.2) flow rate of 90 to 120 sccm; a silane flow rate of 70 to 100 sccm; a gas pressure of 3 to 10 mtorr; a temperature of 300 to 400.degree. C.; and a low frequency power of 2500 to 3500 watts. Wherein the ratio of Ar to O.sub.2 is 0.53, and O.sub.2 to silane is 1.23.
摘要:
A method for depositing dielectric material into gaps between wiring lines in the formation of a semiconductor device includes the formation of a cap layer and the formation of gaps into which high density plasma chemical vapor deposition (HDPCVD) dielectric material is deposited. First and second antireflective coatings may be formed on the wiring line layer, the first and second antireflective coatings being made from different materials. Both antireflective coatings and the wiring line layer are etched through to form wiring lines separated by gaps. The gaps between wiring lines may be filled using high density plasma chemical vapor deposition.
摘要:
A method for depositing dielectric material into gaps between wiring lines in the formation of a semiconductor device includes the formation of a cap layer and the formation of gaps into which high density plasma chemical vapor deposition (HDPCVD) dielectric material is deposited. First and second antireflective coatings may be formed on the wiring line layer, the first and second antireflective coatings being made from different materials. Both antireflective coatings and the wiring line layer are etched through to form wiring lines separated by gaps. The gaps between wiring lines may be filled using high density plasma chemical vapor deposition.
摘要:
A method for depositing dielectric material into gaps between wiring lines in the formation of a semiconductor device includes the formation of a cap layer and the formation of gaps into which high density plasma chemical vapor deposition (HDPCVD) dielectric material is deposited. First and second antireflective coatings may be formed on the wiring line layer, the first and second antireflective coatings being made from different materials. Both antireflective coatings and the wiring line layer are etched through to form wiring lines separated by gaps. The gaps between wiring lines may be filled using high density plasma chemical vapor deposition.
摘要:
A method for depositing dielectric material into gaps between wiring lines in the formation of a semiconductor device includes the formation of a cap layer and the formation of gaps into which high density plasma chemical vapor deposition (HDPCVD) dielectric material is deposited. First and second antireflective coatings may be formed on the wiring line layer, the first and second antireflective coatings being made from different materials. Both antireflective coatings and the wiring line layer are etched through to form wiring lines separated by gaps. The gaps between wiring lines may be filled using high density plasma chemical vapor deposition.
摘要:
A method for depositing dielectric material into gaps between wiring lines in the formation of a semiconductor device includes the formation of a cap layer and the formation of gaps into which high density plasma chemical vapor deposition (HDPCVD) dielectric material is deposited. First and second antireflective coatings may be formed on the wiring line layer, the first and second antireflective coatings being made from different materials. Both antireflective coatings and the wiring line layer are etched through to form wiring lines separated by gaps. The gaps between wiring lines may be filled using high density plasma chemical vapor deposition.
摘要:
A method for depositing dielectric material into gaps between wiring lines in the formation of a semiconductor device includes the formation of a cap layer and the formation of gaps into which high density plasma chemical vapor deposition (HDPCVD) dielectric material is deposited. First and second antireflective coatings may be formed on the wiring line layer, the first and second antireflective coatings being made from different materials. Both antireflective coatings and the wiring line layer are etched through to form wiring lines separated by gaps. The gaps between wiring lines may be filled using high density plasma chemical vapor deposition.