摘要:
A method of manufacturing a light emitting diode (LED) includes growing a light emitting region on a temporary substrate, bonding a transparent substrate of glass or quartz to the light emitting region and then removing the temporary substrate. A metal bonding agent also serving as an ohmic contact layer with LED is used to bond the transparent substrate to form a dual substrate LED element which is then heated in a wafer holding device that includes a graphite lower chamber and a graphite upper cover with a stainless steel screw. Because of the different thermal expansion coefficients between stainless and graphite, the stainless steel screw applies a pressure to the dual substrate LED element during the heating process to assist the bonding of the transparent substrate.
摘要:
A method of manufacturing a light emitting diode (LED) includes growing a light emitting region on a temporary substrate, bonding a metal-coated reflective permanent substrate and then removing the temporary substrate. The reflective metal layer also serves as a bonding agent for bonding the permanent substrate. The bonded LED element and permanent substrate are heated in a wafer bonding tool that includes a graphite lower chamber and a graphite upper cover with a stainless steel screw. Because of the different thermal expansion coefficients between stainless and graphite, the stainless steel screw applies a pressure to the bonded structure during the heating process to assist the bonding of the permanent substrate.
摘要:
A method for fabricating an epitaxial structure includes: (a) forming over a temporary substrate a patterned sacrificial layer that partially exposes the temporary substrate; (b) growing laterally and epitaxially a temporary epitaxial film over the patterned sacrificial layer and the temporary substrate; (c) forming over the temporary epitaxial film an etching-stop layer; (d) forming an epitaxial layer unit over the etching-stop layer; (e) removing the patterned sacrificial layer using a first etchant; and (f) removing the temporary epitaxial film using a second etchant.
摘要:
A method for forming a light emitting diode includes: (a) growing epitaxially an epitaxial film over an epitaxial substrate; (b) roughening an upper surface of the epitaxial film; (c) forming a top electrode on the roughened upper surface of the epitaxial film; (d) detachably attaching a temporary substrate over the roughened upper surface of the epitaxial film; (e) roughening the lower surface of the epitaxial film; (f) disposing the roughened lower surface of the epitaxial film on a reflective top surface of an electrically conductive permanent substrate; (g) filling an optical adhesive in a gap between the roughened lower surface of the epitaxial film and the reflective top surface of the permanent substrate; and (h) after the step (g), removing the temporary substrate from the epitaxial film.
摘要:
This invention provides a light-emitting diode chip with high light extraction, which includes a substrate, an epitaxial-layer structure for generating light by electric-optical effect, a transparent reflective layer sandwiched between the substrate and the epitaxial-layer structure, and a pair of electrodes for providing power supply to the epitaxial-layer structure. A bottom surface and top surface of the epitaxial-layer structure are roughened to have a roughness not less than 100 nm root mean square (rms). The light generated by the epitaxial-layer structure is hence effectively extracted out. A transparent reflective layer not more than 5 μm rms is formed as an interface between the substrate and the epitaxial-layer structure. The light toward the substrate is more effectively reflected upward. The light extraction and brightness are thus enhanced. Methods for manufacturing the light-emitting diode chip of the present invention are also provided.
摘要:
A light emitting device includes: a light-enhancing layered structure of a hexagonal crystal system, the light-enhancing layered structure including a light-enhancing layer having a planar surface that is formed with a plurality of light-enhancing units thereon, each of the light-enhancing units extending in a normal direction relative to the planar surface, being tapered from the planar surface, and having three inclined faces that are adjoined side-by-side and that are respectively parallel to corresponding symmetrical ones of the crystal planes {11 2 k} of the hexagonal crystal system, where k=2 to 5; and a light emitting layered structure formed on the light-enhancing layered structure.
摘要翻译:发光器件包括:六方晶系的增光层状结构,所述光增强层状结构包括具有在其上形成有多个光增强单元的平坦表面的光增强层, 相对于平面在法线方向延伸的光增强单元从平面呈锥形,并且具有并列邻接的三个倾斜面,并且分别与晶面{11 其中 2 k},其中 k = 2至5; 以及形成在增光分层结构上的发光层状结构。
摘要:
A method for fabricating semiconductor devices includes: (a) forming a layered structure that includes a temporary substrate, a plurality of spaced apart sacrificial film regions on the temporary substrate, and a plurality of valley-and-peak areas among the sacrificial film regions; (b) growing laterally and epitaxially an epitaxial film layer over the sacrificial film regions and the valley-and-peak areas, wherein gaps are formed among the epitaxial film layer and the valley-and-peak areas; (c) forming a conductive layer to contact the epitaxial film layer; (d) forming a plurality of grooves to divide the epitaxial film layer and the conductive layer into a plurality of epitaxial structures on the temporary substrate; and (e) removing the temporary substrate and the sacrificial film regions from the epitaxial structures by etching the sacrificial film regions through the gaps and the grooves.
摘要:
An epitaxial structure having a low defect density includes: a base layer; a first epitaxial layer having a plurality of concentrated defect groups, and an epitaxial surface that has a plurality of first recesses corresponding in position to the concentrated defect groups, the sizes of the first recesses being close to each other; and a plurality of defect-termination blocks respectively and filling the first recesses and having polished surfaces. The defect-termination blocks are made of a material which is different in removal rate from that of the first epitaxial layer. The polished surfaces are substantially flush with the epitaxial surface so that the first epitaxial layer has a substantially planarized crystal growth surface
摘要:
This invention provides a light-emitting diode chip with high light extraction, which includes a substrate, an epitaxial-layer structure for generating light by electric-optical effect, a transparent reflective layer sandwiched between the substrate and the epitaxial-layer structure, and a pair of electrodes for providing power supply to the epitaxial-layer structure. A bottom surface and top surface of the epitaxial-layer structure are roughened to have a roughness not less than 100 nm root mean square (rms). The light generated by the epitaxial-layer structure is hence effectively extracted out. A transparent reflective layer not more than 5 μm rms is formed as an interface between the substrate and the epitaxial-layer structure. The light toward the substrate is more effectively reflected upward. The light extraction and brightness are thus enhanced. Methods for manufacturing the light-emitting diode chip of the present invention are also provided.
摘要:
An LED light emitter with heat sink holder and a method for manufacturing it are both disclosed. The LED light emitter with heat sink holder includes a heat sink holder and at least an LED chip. The heat sink holder is made of high thermal conductivity coefficient, and includes a reflecting mirror having a central portion and a reflecting portion surrounding the central portion. A normal of a top surface of the reflecting portion forms an acute angle relative to a normal of a top surface of the central portion. The LED chip is unitarily connected with a top surface of the central portion, and an electrode unit connecting with and Ohmic contacting the light emitting film for supplying power for the light emitting film. The LED light emitter with heat sink holder improves heat dissipation and working duration.