摘要:
Disclosed herein is a protective film. The protective film is produced by alternate coating of a polysilazane-based polymer and a flexible polysiloxane-based polymer. The polysilazane-based polymer is cured at low temperature to form silica, thereby achieving high hardness and high light transmittance. The protective film has improved interfacial adhesion between the respective coating films, which prevents permeation of moisture and oxygen. In addition, the protective film can be easily produced by low-temperature wet processes. Also disclosed herein is an encapsulation material comprising the protective film.
摘要:
Disclosed herein are a thin layer having a composition gradient and a method for the production of the thin layer. According to the method, the thin layer is produced by subjecting a mixture of one or more organic materials and one or more inorganic materials to a sol-gel process. The composition gradient and the surface energy of the thin layer are controlled during production, leaving no interfacial failure defects.
摘要:
A multilayer film is provided. The multilayer film includes a barrier layer and an adhesive layer underlying the barrier layer. The adhesive layer contains a block copolymer that can phase separate into two or more different domains. The multilayer film has good gas and moisture barrier properties and is highly flexible. Therefore, the multilayer film can be effectively used in manufacturing encapsulation structures for electronic devices. In addition, the multilayer film is suitable for use as a substrate for a device. Further provided are a method for producing the multilayer film and an encapsulation structure including the multilayer film.
摘要:
Disclosed herein is a nanostructured thin film. The nanostructured thin film comprises a nanoparticle layer and a number of micro-undulated surfaces formed on the nanoparticle layer. The two micro-undulated structures of the nanostructured thin film are uniformly introduced over a large area. This configuration makes it easy to control the surface properties of the nanostructured thin film. Therefore, the nanostructured thin film can be widely applied to a variety of devices. Also disclosed herein is a method for controlling the surface properties of the nanostructured thin film.