Abstract:
Provided is a wavelength tunable light source including a semiconductor optical amplifier, a beam steering unit or a beam deflector, and a concave diffraction grating integrated therein. The wavelength tunable light source can be easily implemented since locations to which a beam is diffracted by the concave diffraction grating and at which portions of the beam with different wavelengths have constructive interference form a straight line, not a Rowland circle. Furthermore, wavelength tuning and optical coupling characteristics of the wavelength tunable light source are excellent. Since both single integration and hybrid integration are possible for the wavelength tunable light source, the wavelength tunable light source exhibits superior operating characteristics and high reliability.
Abstract:
Provided is a method of fabricating a ridge type waveguide integrated semiconductor optical device. The method includes: separating a substrate into an active waveguide region and a passive waveguide region and selectively epitaxial-growing an active layer and a passive layer in the active waveguide region and the passive waveguide region, respectively, such that the active layer and the passive layer are vertically aligned with each other; sequentially forming a capping layer and an electrode connection layer on the active layer and the passive layer; forming a first insulating layer pattern on a predetermined region of the electrode connection layer disposed in the active waveguide region and simultaneously, forming a second insulating layer pattern on a predetermined region of the electrode connection layer disposed in the passive waveguide region; forming a shallow ridge type active waveguide and a shallow ridge type passive waveguide by performing an etching process using the first and second insulating layer patterns as etch masks until the capping layer is etched to a predetermined depth; and forming a passivation pattern on the entire surface of the shallow ridge type active waveguide and forming a deep ridge type passive waveguide by performing an etching process using the second insulating layer pattern as an etch mask until the substrate is etched to a predetermined depth.
Abstract:
An LCD device and a method for manufacturing the same is disclosed in which the manufacturing process is simplified by etching an overcoat layer and a lower insulating layer at the same time. Disclosed is a method for manufacturing the LCD device that includes forming a thin film transistor (TFT) on an active region of a substrate, forming a gate pad region and data pad region, and forming a passivation layer on the entire surface of the substrate. The manufacturing method further includes forming an overcoat layer and selectively etching the overcoat layer. Contact holes for the pixel electrode, the gate pad, and the data pad are formed by selectively etching the overcoat layer, the passivation layer, and the gate insulating layer though one process.
Abstract:
A method for applying a clamp for a construction strut that allows a pipe to be clamped to the construction strut in which the clamp has a fastener that is not exposed above the clamp curvature and in which the fastener head is easily accessible. Also the clamp has a retaining tab and a neck portion such that it can be installed by straight-in insertion at the top of a construction strut. Also, the method has an embodiment in that the clamp can be installed either on the open side of the construction strut or on the closed side using slots in the closed side by straight-in passing the retaining tab past the inturned flanges on the top of the construction strut and by a rotation at the bottom of the construction strut.
Abstract:
A clamp for a construction strut that allows a pipe to be clamped to the construction strut in which the clamp has a fastener that is not exposed above the clamp curvature and in which the fastener head is easily accessible. Also the clamp has a retaining tab and a neck portion such that it can be installed either on the open side of the construction strut or on the closed side using slots in the closed side by straight-in passing the retaining tab past the inturned flanges on the top of the construction strut.
Abstract:
Provided is an integrated semiconductor light source using locking characteristic by an external light injection, including: an active region controlling an optical gain and an optical output by current injection; and a passive region having a structure integrated with the active region and moving a cavity mode by current injection or voltage application to lock injection light.
Abstract:
Provided is an optical deflector for deflecting radiation beams. The optical deflector includes: a peripheral region having a first effective refractive index; and a deflection pattern region having a predetermined shape and a second effective refractive index, wherein the second effective refractive index differs from the first effective refractive index. Here, due to the deflection pattern region having the predetermined shape, the radiation beams are deflected in a direction starting from a certain point. By using the optical deflector, the locus of a light source can be designed in one of various forms, such as a straight line, a circle, an ellipse, or a parabola.
Abstract:
An IGBT includes a first silicon region over a collector region, and a plurality of pillars of first and second conductivity types arranged in an alternating manner over the first silicon region. The IGBT further includes a plurality of well regions each extending over and being in electrical contact with one of the pillars of the first conductivity type, and a plurality of gate electrodes each extending over a portion of a corresponding well region. The physical dimensions of each of the first and second conductivity type pillars and the doping concentration of charge carriers in each of the first and second conductivity type pillars are selected so as to create a charge imbalance between a net charge in each pillar of first conductivity and a net charge in its adjacent pillar of the second conductivity type.
Abstract:
The present disclosure provides a light emitting display device including a first substrate and a second substrate and a light emitting part disposed therebetween. The first substrate includes an active layer, source and drain electrodes, an insulating layer, and a gate electrode. The active layer is doped with first dopant ions and second dopant ions. The light emitting display may have a fast response characteristic due to a reduced resistance of the active layer and an improved characteristic of current drift.
Abstract:
A channel switching function is added to a wavelength division multiplexing passive optical network (WDM-PON) system, which is an access optical network system, and the potential transmission rate is increased by combining wide wavelength tunable lasers and a time division multiplexing (TDM) data structure and properly using the necessary optical components. In addition, when the wavelength of a light source or an arrayed waveguide grating (AWG) changes, the wavelength is traced and the magnitude of a transmitted signal is maximized without an additional detour line using a loop-back network structure. Furthermore, fewer thermo-electric controllers (TECs) are required for stabilizing the temperature of an optical line terminal (OLT) using wavelength tunable lasers, each laser electrically changing its wavelength.