Abstract:
A portable terminal and a method for discovering wirelessly connectable devices are provided. The method includes requesting discovery of wirelessly connectable devices, discovering peripheral devices that are wirelessly connectable in at least one of a plurality of wireless communication schemes supported by the portable terminal, and displaying a list of the discovered devices. The method may discover and display peripheral devices capable of establishing a wireless communication connection in at least one of various wireless communication schemes supported by the portable terminal at one time to improve the convenience for a user. In addition, the method may display connectable wireless communication schemes together with a list of discovered devices to more easily establish a wireless communication connection in a desired scheme of the user.
Abstract:
Provided is a hybrid super capacitor using a composite electrode that may enhance equivalent series resistance (ESR) using a carbon nanotube chain. The hybrid super capacitor includes: an anode 11 including an anode oxide layer 11a and an activated carbon layer applied 11b on the anode oxide layer 11a; and a cathode 21 being disposed to face the anode 11. The cathode 21 may include a silicon oxide layer 21a, a lithium titanium oxide layer 21b disposed on the silicon oxide layer 21a, and a carbon nanotube chain CT formed to pass through the silicon oxide layer 21a and the lithium titanium oxide layer 21b to thereby be electrically connected to each other, thereby enhancing ESR and expanding an output density and a lifespan of the hybrid super capacitor.
Abstract:
Provided is a high power super capacitor including: a bobbin; an electrode assembly being wound into the bobbin to be in a jellyroll type; a conductive connection member being formed in each of one end and another end of the electrode assembly using electric energy; and a plug being inserted into each of one end and another end of the bobbin, and being bonded with the conductive connection member using electric energy to be electrically connected to the electrode assembly. The electrode assembly may include a first electrode plate having a first polarity and including an inactive material area collector where the conductive connection member is formed in the one end of the electrode assembly, a second electrode plate having a second polarity and including another inactive material area collector where the conductive connection member is formed in the other end of the electrode assembly, and a separator being disposed between the first electrode plate and the second electrode plate to insulate between the first electrode plate and the second electrode plate. Accordingly, the high power super capacitor may increase a contact area without decreasing an area of electrode active material layer and may decrease an equivalent series resistance by forming a conductive connection member using electric energy, thereby enhancing an exothermic characteristic and being applied to a high power field.
Abstract:
A logic circuit may include at least one magnetic tunnel junction device including a first layer configured to receive a particular input signal and a second layer connected to a node, and an inverter connected to the node and configured to generate an output signal by inverting a signal of the node, wherein the inverter includes a transistor on a substrate, and the at least one magnetic tunnel junction device is on an upper portion of the transistor. The at least one magnetic tunnel junction device may include first and second magnetic tunnel junction devices configured to receive first and second input signals, respectively. The logic circuit may include a magnetic tunnel junction device and a reference resistor configured to receive a second input signal, the reference resistor connected to the node, the reference resistor having a reference resistance. The logic circuit may be included in an apparatus.
Abstract:
Provided is a package type multilayer thin film capacitor for a high capacitance, including: a capacitance block 110; a pair of clamp members 120 and 130 being installed on one side and another side of the capacitance block 110, respectively; a pair of lead members 140 and 150 being installed on the clam members 120 and 130, respectively; and a molding member 160 filling in the capacitance block 110 to partially expose each of the pair of lead members 140 and 150. The capacitance block may be configured by adhering at least two of a ceramic sintered member 111, a metal capacitance member 112, and a thin film capacitance member 113 using an insulating adhesive member and thereby disposing the at least two members in a multilayered form. Accordingly, capacitance may increase and mechanical strength may be enhanced.
Abstract:
A Touch Screen Panel (TSP) Liquid Crystal Display (LCD) device for reducing LCD noise measured in a TSP is provided. The TSP LCD device includes a ground line along an edge of an Indium Tin Oxide (ITO) layer formed in a shield layer for grounding the ITO layer. With this arrangement, a resistance value difference according to a position of the ITO layer can be minimized. Accordingly, an LCD noise shield function can be improved.
Abstract:
Provided is a package type multi-layer thin film capacitor for large capacitance, including: a ceramic sintered body formed with slots on one side and another side thereof, respectively; a plurality of first internal electrode layers formed within the ceramic sintered body; a plurality of second internal electrode layers formed within the ceramic sintered body to be positioned between the plurality of first internal electrode layers; a pair of first main connection electrode members inserted into the slots to be connected to the first internal electrode layers or the second internal electrode layers, respectively; a pair of first main lead members inserted into the slots and to be connected to the first main connection electrode members, respectively; and a sealing member sealing the ceramic sintered body to partially expose each of the pair of first main lead members.