摘要:
A method for forming a microelectronic capacitor includes the steps of forming a first conductive layer on a substrate and forming an oxide reducing layer on the first conductive layer opposite the substrate wherein the oxide reducing layer reduces oxidation of the first conductive layer. An oxide layer is formed on the oxide reducing layer opposite the substrate, and a dielectric layer is formed on the oxide layer opposite the substrate wherein the dielectric layer has a dielectric constant that is higher than a dielectric constant of the oxide reducing layer, and higher than a dielectric constant of the oxide layer. In addition, a second conductive layer is formed on the dielectric layer opposite the substrate. Related structures are also discussed.
摘要:
A microelectronic capacitor is formed by nitrating the surface of a conducting electrode on a microelectronic substrate. The nitrated surface of the conductive electrode is then oxidized. The nitrating and oxidizing steps collectively form a film of silicon oxynitride on the conductive electrode. A tantalum pentoxide film is then formed on the oxidized and nitrated surface of the conductive electrode. The tantalum pentoxide film may then be thermally treated in the presence of oxygen gas. High performance microelectronic capacitors are thereby provided.
摘要:
A capacitor of a highly integrated semiconductor device and a manufacturing method thereof is provided. In the highly integrated semiconductor device, an HSG polysilicon layer pattern is formed having a multitude of hemispherical grains (HSG) on the top and side surfaces of the storage electrode. Thus, the etching of and damage to the HSG polysilicon layer pattern can be prevented, and capacitance can be increased by maximizing the surface area of the storage electrode.
摘要:
A microelectronic capacitor is formed by nitrating the surface of a conducting electrode on a microelectronic substrate. The nitrated surface of the conductive electrode is then oxidized. The nitrating and oxidizing steps collectively form a film of silicon oxynitride on the conductive electrode. A tantalum pentoxide film is then formed on the oxidized and nitrated surface of the conductive electrode. The tantalum pentoxide film may then be thermally treated in the presence of oxygen gas. High performance microelectronic capacitors are thereby provided.
摘要:
An apparatus and method for trimming a picture in a digital camera are provided. A trimming apparatus in a digital camera having an external window includes a black bar determiner which determines a size of a black bar used to cover a part of the external window based on ratio information of a printing paper received from a printer; a picture changing unit which changes the size or position of a picture, or both the size and position of the picture, based on a user input signal to create a display picture on the external window; and a coordinate determiner which determines coordinates of the display picture based on the display picture and the size of the black bar. The trimming apparatus and a trimming method make it possible to fix an external window of a digital camera and move a picture, thereby providing a user with an accurate way to select a trimming picture.
摘要:
A display device with a display region and a non-display region surrounding the display region, the display device comprising: a first substrate and a second substrate. The first substrate comprises: a first insulating substrate; a gate and data line formed on the first insulating substrate; a pixel thin film transistor formed on the display region and electrically connected to the gate line; a pixel electrode electrically connected to the pixel thin film transistor; a gate driver formed on the non-display region and connected to the gate line; and a direct current (DC)/DC converter formed on the non-display region and having a capacitance part. The capacitance part includes: a first capacitance part with a first electrode, a first dielectric layer, and a second electrode; and a second capacitance part with the second electrode, a second dielectric layer, and a third electrode.
摘要:
A thin film transistor substrate having a semiconductor layer including a low concentration region and a source region/drain region adjacent to the low concentration region at both sides of a channel region made of polysilicon; a gate insulating layer and a conductive layer on the substrate the conductive layer patterned to form a gate electrode.
摘要:
A semiconductor device having a capacitor of large capacitance and the fabrication method thereof are disclosed. The semiconductor device comprises; a first electrode composed of a conductive structure whose entire surface, including sidewalls, are uneven and formed on the semiconductor substrate; a second electrode formed on the first electrode; and a dielectric film formed between the first and second electrodes. Also the method comprises the steps of forming as a first electrode a conductive structure with an uneven surface on a semiconductor structure, forming a dielectric film, and forming a conductive layer as a second electrode on the conductive structure. Accordingly, a capacitor of large capacitance and high reliability can be obtained.
摘要:
A thin film transistor substrate having a semiconductor layer including a low concentration region and a source region/drain region adjacent to the low concentration region at both sides of a channel region made of polysilicon; a gate insulating layer and a conductive layer on the substrate the conductive layer patterned to form a gate electrode.
摘要:
A liquid crystal display device with a display region and a non-display region surrounding the display region, the liquid crystal display device comprising: a first substrate; a second substrate which faces the first substrate; and a liquid crystal layer which is interposed between the first substrate and the second substrate, the first substrate comprising: a first insulating substrate; gate and data lines which are formed on the first insulating substrate and intersecting each other; a pixel thin film transistor formed on the display region and electrically connected to the gate and data lines; a pixel electrode electrically connected to the pixel thin film transistor; a gate driver formed on the non-display region and connected to the gate line to drive the gate line; and a direct current (DC)/DC converter formed on the non-display region and comprises a converter thin film transistor and a capacitance part; the capacitance part includes: a first capacitance part which comprises a first electrode, a first dielectric layer formed on the first electrode, and a second electrode formed on the first dielectric layer; and a second capacitance part which comprises the second electrode, a second dielectric layer formed on the second electrode, and a third electrode formed on the second dielectric layer.