Abstract:
A light emitting diode chip structure includes a substrate, a mesa type light emitting diode structure, and an electroluminescent layer. The mesa type light emitting diode structure includes a first semiconductor layer, a light emitting layer, and a second semiconductor layer. The mesa type light emitting diode structure is formed on the substrate. The first semiconductor layer is formed on the substrate. The light emitting layer is formed on a portion of the first semiconductor layer, and a portion of the first semiconductor layer is uncovered. The second semiconductor layer is formed on the light emitting layer. The electroluminescent layer is formed on the second semiconductor layer. Furthermore, a light emitting diode element is also disclosed herein.
Abstract:
The disclosure provides a heat sink for electrical elements and a light-emitting device containing thereof. The heat sink includes a radiating substrate and at least one hollow radiating channel. In which, the hollow radiating channel is horizontally embedded in the radiating substrate, and has two openings disposed on the same site or the opposite sites of the radiating substrate, so that gas may flow in the hollow radiating channel and remove heat of the radiating substrate. And a light-emitting device containing the heat sink is also provided.
Abstract:
The present disclosure provides a light emitting structure including a blue light source, a first fluorescent material layer and a second fluorescent material layer. The blue light source has a light emitting surface. The first fluorescent material layer covers the light emitting surface of the blue light source. The first fluorescent material layer consists of a first fluorescent material. An excitation band of the first fluorescent material is in a blue wave band, and an emission band of the first fluorescent material is in a green wave band. The second fluorescent material layer covers the first fluorescent material layer. The second fluorescent material layer consists of a second fluorescent material. An excitation band of the second fluorescent material is in a green wave band, and an emission band of the second fluorescent material is in a red wave band. A light device and a backlight module are also provided herein.
Abstract:
A LED package structure includes a base portion, a light-emitting chip, a cup portion and an encapsulating glue. The base portion has an upper surface and a lower surface. The upper surface has a die-bonding area. The light-emitting chip emits a light with a first wavelength and is located on the die-bonding area. The cup portion is located on the base portion to surround the die-bonding area to form a recess having an opening. The encapsulating glue is filled into the recess. The encapsulating glue has a wavelength conversion material configured to convert part of the light with the first wavelength into a light with a second wavelength. The cup portion includes an electro chromic layer electrically connected to a first external power and a transmittance of the electro chromic layer is changed in accordance with an input voltage of the first external power to adjust the light-emitting profile of the light-emitting chip.
Abstract:
A light-emitting device is provided. The light-emitting device comprises a substrate and a light-emitting element. The substrate comprises a first variable resistor, a second variable resistor, an insulation portion and a carrier. The insulation portion is located between the first variable resistor and the second variable resistor. The carrier is surrounded by the insulation portion, and the light-emitting element is disposed on the carrier. The first variable resistor, the second variable resistor and the insulation portion respectively penetrate the substrate.
Abstract:
A light-emitting device is provided. The light-emitting device comprises a substrate and a light-emitting element. The substrate comprises a first variable resistor, a second variable resistor, an insulation portion and a carrier. The insulation portion is located between the first variable resistor and the second variable resistor. The carrier is surrounded by the insulation portion, and the light-emitting element is disposed on the carrier. The first variable resistor, the second variable resistor and the insulation portion respectively penetrate the substrate.
Abstract:
A pixel structure includes a light emitting diode chip and a light blocking structure. The light emitting diode chip includes a P-type semiconductor layer, an active layer, an N-type semiconductor layer, a first electrode, and K second electrodes. The active layer is located on the P-type semiconductor layer. The N-type semiconductor layer is located on the active layer. The N-type semiconductor layer has a first top surface that is distant from the active layer. The first electrode is electrically connected to the P-type semiconductor layer. The light blocking structure is located in the light emitting diode chip and defines K sub-pixel regions. The active layer and the N-type semiconductor layer are divided into K sub-portions respectively corresponding to the K sub-pixel regions by the light blocking structure. The K sub-pixel regions share the P-type semiconductor layer.
Abstract:
The present disclosure provides a light emitting structure including a blue light source, a first fluorescent material layer and a second fluorescent material layer. The blue light source has a light emitting surface. The first fluorescent material layer covers the light emitting surface of the blue light source. The first fluorescent material layer consists of a first fluorescent material. An excitation band of the first fluorescent material is in a blue wave band, and an emission band of the first fluorescent material is in a green wave band. The second fluorescent material layer covers the first fluorescent material layer. The second fluorescent material layer consists of a second fluorescent material. An excitation band of the second fluorescent material is in a green wave band, and an emission band of the second fluorescent material is in a red wave band. A light device and a backlight module are also provided herein.