Abstract:
A light emitting device package includes a package body, first and second lead frames located on the package body, a light source mounted on at least one of the first or second lead frames, a lens located on the package body, and a wavelength conversion unit partially located on the package body between the package body and the lens.
Abstract:
Embodiments provide a light-emitting device package including a light source, a lens disposed on the light source, and a diffuser located on at least one of the interior of the lens or a light emission surface of the lens, so as to diffuse light. The diffuser includes at least one of a light dispersing agent distributed in the interior of the lens, or at least one light diffusion structure located on at least one of the outside or the inside of the light emission surface of the lens. The light diffusion structure includes a rough surface formed on the light emission surface of the lens.
Abstract:
A touch window is provided. The touch window may include a substrate including an effective region and an ineffective region, and a plurality of pressure detection members provided on the effective region. The plurality of pressure detection members may be spaced apart from each other, and the plurality of pressure detection members may include a strain gauge or a piezoelectric material.
Abstract:
A light emitting device package includes: a light emitting device disposed on a substrate; a diffusion plate disposed on the substrate to surround the light emitting device; and a molding portion that is disposed on the substrate and has a shape of an aspheric lens whose center is recessed, The center of the molding portion is located on the same axis as the center of the light emitting device, and the diffusion plate may be interposed between the light emitting device and the molding portion. The molding portion having the shape of the aspheric lens whose center is recessed and the diffusion plate are employed to widely diffuse the light emitted from the light emitting device. Thereby, the efficiency of light can be increased, and manufacturing time and cost can be reduced. Simultaneously, a yellow ring phenomenon can be avoided.
Abstract:
Disclosed are a nanowire composition and a method of fabricating a transparent electrode. The nanowire composition includes a metallic nanowire, an organic binder, a surfactant, and a solvent. The metallic nanowire has a diameter of 30 nm to 50 nm, and a length of 15 μm to 40 μm, and a weight percentage of the metallic nanowire is in a range of 0.01% to 0.4%. The method of fabricating the transparent electrode includes preparing a nanowire composition, coating the nanowire composition on a substrate, and performing heat treatment with respect to the nanowire composition. The nanowire composition includes a metallic nanowire, an organic binder, a surfactant, and a solvent, and the metallic nanowire has a diameter of 30 nm to 50 nm, a length of 15 μm to 40 μm, and a weight percentage of 0.01% to 0.4%.