Abstract:
A light emitting device includes at least one layer below or above a reflective layer to prevent delamination of the reflective layer from a layer below and/or above the reflective layer.
Abstract:
An embodiment provides a light emitting device comprising: a substrate; a plurality of light emitting cells disposed on the substrate to be spaced apart from one another, each light emitting cell comprising a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer, the light emitting cell having a via hole passing through the second conductive type semiconductor layer, the active layer and a part of the first conductive type semiconductor layer; a first electrode layer electrically connected to the first conductive type semiconductor layer at a bottom of the via hole; a second electrode layer disposed on the second conductive type semiconductor layer; and a first passivation layer electrically separating the first electrode layer from the second electrode layer, wherein the first electrode layer of one light emitting cell is electrically connected to the second electrode layer of another light emitting cell adjacent to the one light emitting cell, and due to the first passivation layer and the first electrode layer formed on the upper surfaces of the plurality of light emitting cells and on the substrate between the light emitting cells at intervals, light extraction efficiency on the whole surface of the light emitting device can be improved, thereby increasing light emitting efficiency.
Abstract:
A light emitting device is provided a transmissive substrate; a first pattern portion including a protrusions; a second pattern portion including a concaves having a width smaller than a width of each protrusion; a light emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer and an active layer, under the transmissive substrate; a first electrode under the first conductive semiconductor layer; a reflective electrode layer under the second conductive semiconductor layer; a second electrode under the reflective electrode layer; a first connection electrode under the first electrode; a second connection electrode under the second electrode; and an insulating support member around the first electrode and the first connection electrode and around the second electrode and the second connection electrode. A transmissive resin layer is on the transmissive substrate and an insulating layer is between the insulating support member and the reflective electrode layer.
Abstract:
A light emitting device may be provided that includes a substrate, a light emitting structure, a first electrode on a part of the first semiconductor layer, an electrode layer on the second conductive semiconductor layer, an insulating layer on the electrode layer, a second electrode on the electrode layer, a support member on the insulating layer, a first connection electrode connected to the first electrode, and a second connection electrode connected to the second electrode. The insulating layer is disposed on a side surface of the light emitting structure and the part of the first semiconductor layer. The insulating layer includes a first layer and a second layer having a different material from the first layer. The first layer of the insulating layer has a refractive index different from the second layer of the insulating layer.