摘要:
A method of forming a semiconductor device is provided in which a substrate (102) is provided which has a gate dielectric layer (106) disposed thereon, and a gate electrode (116) having first and second sidewalls is formed over the gate dielectric layer. First (146) and second (150) extension spacer structures are formed adjacent the first and second sidewalls, respectively. In the resulting device: (a) the first and second extension spacer structures have different dimensions; (b) the first and second extension spacer structures comprise first and second distinct materials; (c) the device has asymmetric source/drain extensions (162); and/or (d) the device has an oxide layer (160) disposed between the first extension spacer structure and the gate electrode, and either (i) the device has no dielectric layer disposed between the second extension spacer structure and the gate electrode, or (ii) the device has a second dielectric layer disposed between the second extension spacer structure and the gate electrode, and the first dielectric layer is substantially thicker than the second dielectric layer.
摘要:
A method of forming a semiconductor device is provided in which a substrate (102) is provided which has a gate dielectric layer (106) disposed thereon, and a gate electrode (116) having first and second sidewalls is formed over the gate dielectric layer. First (146) and second (150) extension spacer structures are formed adjacent the first and second sidewalls, respectively. In the resulting device: (a) the first and second extension spacer structures have different dimensions; (b) the first and second extension spacer structures comprise first and second distinct materials; (c) the device has asymmetric source/drain extensions (162); and/or (d) the device has an oxide layer (160) disposed between the first extension spacer structure and the gate electrode, and either (i) the device has no dielectric layer disposed between the second extension spacer structure and the gate electrode, or (ii) the device has a second dielectric layer disposed between the second extension spacer structure and the gate electrode, and the first dielectric layer is substantially thicker than the second dielectric layer.
摘要:
A semiconductor process and apparatus provide a dual or hybrid substrate by forming a second semiconductor layer (214) that is isolated from, and crystallographically rotated with respect to, an underlying first semiconductor layer (212) by a buried insulator layer (213); forming an STI region (218) in the second semiconductor layer (214) and buried insulator layer (213); exposing the first semiconductor layer (212) in a first area (219) of a STI region (218); epitaxially growing a first epitaxial semiconductor layer (220) from the exposed first semiconductor layer (212); and selectively etching the first epitaxial semiconductor layer (220) and the second semiconductor layer (214) to form CMOS FinFET channel regions (e.g., 223) and planar channel regions (e.g., 224) from the first epitaxial semiconductor layer (220) and the second semiconductor layer (214).
摘要:
A semiconductor process and apparatus provide a dual or hybrid substrate by forming a second semiconductor layer (214) that is isolated from, and crystallographically rotated with respect to, an underlying first semiconductor layer (212) by a buried insulator layer (213); forming an STI region (218) in the second semiconductor layer (214) and buried insulator layer (213); exposing the first semiconductor layer (212) in a first area (219) of a STI region (218); epitaxially growing a first epitaxial semiconductor layer (220) from the exposed first semiconductor layer (212); and selectively etching the first epitaxial semiconductor layer (220) and the second semiconductor layer (214) to form CMOS FinFET channel regions (e.g, 223) and planar channel regions (e.g., 224) from the first epitaxial semiconductor layer (220) and the second semiconductor layer (214).
摘要:
An integrated circuit includes NMOS and PMOS transistors. The NMOS has a strained channel having first and second stress values along first and second axes respectively. The PMOS has a strained channel having third and fourth stress values along the first and second axes. The first value stress differs from the third value and the second value differs from the fourth value. The NMOS and PMOS have a common length (L) and effective width (W), but differ in length of diffusion (SA) and/or width of source/drain (WS). The NMOS WS may exceed the PMOS WS. The NMOS may include multiple dielectric structures in the active layer underlying the gate. The SA of the PMOS may be less than the SA of the NMOS. The integrated circuit may include a tensile stressor of silicon nitride over the NMOS and a compressive stressor of silicon nitride over the PMOS.
摘要:
Two different transistors types are made on different crystal orientations in which both are formed on SOI. A substrate has an underlying semiconductor layer of one of the crystal orientations and an overlying layer of the other crystal orientation. The underlying layer has a portion exposed on which is epitaxially grown an oxygen-doped semiconductor layer that maintains the crystalline structure of the underlying semiconductor layer. A semiconductor layer is then epitaxially grown on the oxygen-doped semiconductor layer. An oxidation step at elevated temperatures causes the oxide-doped region to separate into oxide and semiconductor regions. The oxide region is then used as an insulation layer in an SOI structure and the overlying semiconductor layer that is left is of the same crystal orientation as the underlying semiconductor layer. Transistors of the different types are formed on the different resulting crystal orientations.
摘要:
A process of forming an electronic device can include forming a patterned oxidation-resistant layer over a semiconductor layer that overlies a substrate, and patterning the semiconductor layer to form a semiconductor island. The semiconductor island includes a first surface and a second surface opposite the first surface, and the first surface lies closer to the substrate, as compared to the second surface. The process can also include forming an oxidation-resistant material along a side of the semiconductor island or selectively depositing a semiconductor material along a side of the semiconductor island. The process can further include exposing the patterned oxidation-resistant layer and the semiconductor island to an oxygen-containing ambient, wherein a first portion of the semiconductor island along the first surface is oxidized during exposing the patterned oxidation-resistant layer, the semiconductor island, and the oxidation-resistant material to an oxygen-containing ambient.
摘要:
An electronic device can include a first semiconductor portion and a second semiconductor portion, wherein the compositions of the first and second semiconductor portions are different from each other. In one embodiment, the first and second semiconductor portions can have different stresses compared to each other. In one embodiment, the electronic device may be formed by forming an oxidation mask over the first semiconductor portion. A second semiconductor layer can be formed over the second semiconductor portion of the first semiconductor layer and have a different composition compared to the first semiconductor layer. An oxidation can be performed, and a concentration of a semiconductor element (e.g., germanium) within the second portion of the first semiconductor layer can be increased. In another embodiment, a selective condensation may be performed, and a field isolation region can be formed between the first and second portions of the first semiconductor layer.
摘要:
A semiconductor device is formed having two physically separate regions with differing properties such as different surface orientation, crystal rotation, strain or composition. In one form a first layer having a first property is formed on an insulating layer. The first layer is isolated into first and second physically separate areas. After this physical separation, only the first area is amorphized. A donor wafer is placed in contact with the first and second areas. The semiconductor device is annealed to modify the first of the first and second separate areas to have a different property from the second of the first and second separate areas. The donor wafer is removed and at least one semiconductor structure is formed in each of the first and second physically separate areas. In another form, the separate regions are a bulk substrate and an electrically isolated region within the bulk substrate.
摘要:
A transistor is formed using a semiconductor substrate and forming a control electrode overlying the semiconductor substrate. A first current electrode is formed within the semiconductor substrate and adjacent the control electrode. The first current electrode has a first predetermined semiconductor material. A second current electrode is formed within the semiconductor substrate and adjacent the control electrode to form a channel within the semiconductor substrate. The second current electrode has a second predetermined semiconductor material that is different from the first predetermined semiconductor material. The first predetermined semiconductor material is chosen to optimize bandgap energy of the first current electrode, and the second predetermined semiconductor material is chosen to optimize strain of the channel.