Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. A substrate so formed can be used to implement an optically switched device, such as a mixer, that utilizes optical source and optical detector components.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. A portion of the accommodating buffer layer may be used to form a dielectric for a dielectric resonance. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials. The use of monocrystalline dielectric material as an overlying layer is disclosed to facilitate the fabrication of on chip high frequency communications devices such as dielectric resonators with direct interface to compound semiconductor material in the integrated circuit. The provision of on chip resonators through the use of dielectric material in the form of a monocrystalline layer facilitates high frequency communications circuits on a single integrated circuit that may include materials such as thin film crystalline materials used as resonators including dielectric resonators.
Abstract:
An apparatus for generating an oscillating reference signal at a reference frequency includes: (a) a light conveying element having a first end and a second end; the light conveying element conveying substantially all light received or reflected at one end to the other end; the light conveying element having a light transmission path intermediate the first end and the second end; the transmission path being related to the reference frequency; (b) a light transmitting element oriented to introduce light into the light conveying element at one end of the light conveying element; and (c) a light receiving element oriented to receive the transmitted light at one end of the light conveying element. The light conveying element, the light transmitting element and the light receiving element are implemented in a monolithic structure arranged on a single substrate.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer on a silicon wafer. The accommodating buffer layer includes a layer of conductive metallic oxide spaced apart from the silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. A diode is formed on the overlying monocrystalline material layer, which is a gallium arsenide layer. Optionally, the accommodating buffer layer may include a non-conductive oxide layer on the conductive metallic oxide layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials.
Abstract:
A composite semiconductor structure includes islands of noncompound semiconductor materials formed on a noncompound substrate, and an optical testing structure. In one embodiment, a scan chain runs through the noncompound substrate (and possibly also through the islands) and terminates in the islands at optical interface elements, one of which is an optical emitter and the other of which is an optical detector. A test device inputs test signals to, and reads test signals from, the scan chain by interfacing optically with the optical interface elements. In another embodiment, an optical detector is formed in the silicon substrate and an optical emitter is formed in the compound semiconductor material. A leaky waveguide communicating with the emitter overlies the detector, and detection by the detector of light emitted by the emitter is an indication of the absence of an intended circuit element between the detector and the leaky side of the waveguide.