摘要:
Ultrashort pulse laser processing bores, welds or cuts objects (work pieces) by converging ultrashort laser pulses by a lens on the objects (work pieces) positioned at the focus and heating small spots or narrow lines on the objects (work pieces). Shortage of a focal depth of the lens prevents the ultrashort pulse laser processing from positioning the object (a work piece) and forming a deep, constant-diameter cylindrical hole. Z-parameter is defined to be Z=2fcΔt/Δi2, where Δt is a FWHM pulse width of the ultrashort pulse laser, Δi is a FWHM beam diameter of the ultrashort pulse, f is a focal length of the lens and c is the light velocity in vacuum. Selection of an optical system including a diffraction-type lens which gives the Z-parameter less than 1 (Z
摘要:
Ultrashort pulse laser processing bores, welds or cuts objects (work pieces) by converging ultrashort laser pulses by a lens on the objects (work pieces) positioned at the focus and heating small spots or narrow lines on the objects (work pieces). Shortage of a focal depth of the lens prevents the ultrashort pulse laser processing from positioning the object (a work piece) and forming a deep, constant-diameter cylindrical hole. Z-parameter is defined to be Z=2fcΔt/Δi2, where Δt is a FWHM pulse width of the ultrashort pulse laser, Δi is a FWHM beam diameter of the ultrashort pulse, f is a focal length of the lens and c is the light velocity in vacuum. Selection of an optical system including a diffraction-type lens which gives the Z-parameter less than 1 (Z
摘要:
A condensing optical system having a condensed light spot with a small size and a large focal depth without causing a problem of a decrease in intensity of the condensed light spot or discontinuity of an intensity distribution in front and rear areas of a focal position is provided. The condensing optical system that condenses a laser beam generated by a laser source at a predetermined focal length is designed to satisfy Expressions (a) to (d), thereby producing 3rd and 5th spherical aberrations: |Z8|≧0.1λ or |Z15|≧0.05λ, (a) Z8/Z15≧3 or Z8/Z15
摘要:
A condensing optical system having a condensed light spot with a small size and a large focal depth without causing a problem of a decrease in intensity of the condensed light spot or discontinuity of an intensity distribution in front and rear areas of a focal position is provided. The condensing optical system that condenses a laser beam generated by a laser source at a predetermined focal length is designed to satisfy Expressions (a) to (d), thereby producing 3rd and 5th spherical aberrations: |Z8|≧0.1λ or |Z15|≧0.05λ, (a) Z8/Z15≧3 or Z8/Z15
摘要:
A conventional diffractive optical element (DOE), which consists of repetition of a unit pattern , has an advantage of applicability of the Fast Fourier Transform algorithm to calculate diffraction beam spots intensities on lattice points on an image plane. But, the conventional DOE has a drawback of impossibility of diffracting a laser beam off the lattice points. This invention designs a DOE by giving arbitrary complex amplitude transmittance {tmn} to every pixel (m, n), calculating actual Fourier transform from {tmn} to intensity W(α, β), and obtaining intensity of a diffraction beam directing in any α and β direction. Since α, β are not necessary to be on lattice points, the FFT is of no use. Angular resolutions U and V satisfy inequalities U
摘要:
A laser hole boring apparatus comprising a galvanomirror beam scanning system, a DOE beam diffraction system and a selecting device for the two systems optionally. The DOE system bores many holes simultaneously on printed circuit boards or packages by converting a laser beam into two dimensional diffraction beams and converging the diffraction beams by an f sin &thgr; lens into spots on the object (board, package). The galvanomirror system bores many holes sequentially on printed circuit boards or packages by scanning a pulse laser beam in two dimensions and converging the scanned beam by an f sin &thgr; lens into a spot on the object.
摘要:
A laser beam condensing device which can be manufactured at low cost by using reflecting mirrors which can be machined at low cost. The device is capable of condensing a laser beam to a high energy density while eliminating any optical path difference, even if the optical axis of the incident beam strays. This device includes a first and a second reflecting mirror. An incident laser beam is deflected by these mirrors in the same direction. One of the two mirrors is a toroidal mirror, while the other is a spherical, cylindrical or toroidal reflecting mirror. The mirror surfaces of the two reflecting mirrors are machined so that the second reflecting mirror can cancel out any wave front aberrations of the laser beam reflected by the first reflecting mirror.
摘要:
In a laser optical device including a beam shaping optical system 3 for shaping a laser beam 2 into a predetermined cross-sectional intensity distribution and converging the light and an image formation optical system 6 for forming an image of a shaped beam 4 shaped and converged through the beam shaping optical system 3, the image formation optical system 6 is made up of an objective lens system 8 having a negative focal length placed ahead of a focal plane 7 of the beam shaping optical system 3 and an imaging lens system 9 placed behind the objective lens system 8.
摘要:
The present invention relates to a laser processing method and laser processing apparatus for enabling improvement and maintenance of homogenization of a beam intensity distribution in an irradiated region. The laser processing apparatus comprises, at least, an ASE light generation section for emitting ASE light, and a homogenizer for splitting the ASE light into multiple beams. The ASE generation section for emitting the ASE light as processing laser light is provided, and whereby the deterioration of homogenization due to inter-beam interference is suppressed. The homogenization of beam intensity distribution is improved by locating a condenser lens relative to an object such that the object is shifted from a focus position of the condenser lens in the homogenizer, by intentionally deteriorating a beam quality M2 of the ASE light itself emitted from the ASE light generation section to about 2 to 10, or by a combination of these, in laser processing.
摘要:
Purpose: To provide a laundry system with improved customer services by utilizing portable information terminals having a radiocommunication function such as mobile phones and PHS. Constitution: Upon completion of washing or drying in a laundry machine 102, data for notifying the user of the completion of the treatment are transmitted to the user's mobile phone 100. In addition, when a prescribed time, for example, 10 minutes, elapses after washing or drying finished, a request for permission to unload the laundry is transmitted to the user's mobile phone 100 so as to ask the user whether the clothes can be taken out from the laundry machine 102 or not. The system charges the user when a prohibition response is sent back or there is no response to the request for permission to unload the laundry.