Abstract:
The present disclosure relates to a cooperative driving control technology, by which the set speed of an automatic cruise system of follower vehicles, other than a foremost vehicle, among cooperative driving vehicles is set to be higher by a certain value than the driving speed of the leader vehicle, and the headway time of a vehicle immediately after a departing vehicle is increased during a departure period of the follower vehicle, thereby enabling the departing vehicle to quickly and completely depart and preventing a collision between vehicles during the period.
Abstract:
Disclosed herein are an impact-absorbing apparatus and method for a vehicle, which are applied to an automatic emergency brake (AEB) system of a vehicle. The impact-absorbing apparatus includes a path generation unit configured to generate an own vehicle travel path of an own vehicle, based on a speed and travel direction of the own vehicle, and a preceding vehicle travel path of a preceding vehicle, based on a speed and travel direction of the preceding vehicle, and a collision determination unit configured to determine whether or not the own vehicle collides with the preceding vehicle, based on the own vehicle travel path and the preceding vehicle travel path, wherein when it is impossible to avoid the collision between the own vehicle and the preceding vehicle, the path generation unit generates a new travel path by comparing the own vehicle travel path with the preceding vehicle travel path.
Abstract:
Disclosed herein are a lane-change assistance system of a vehicle and a lane-change assistance method thereof. The lane change assistance system includes a wheel speed sensor to detect a wheel speed of the vehicle, a steering angle sensor to detect a steering angle of the vehicle, and a micro controller unit to calculate, using the wheel speed and the steering angle, a desired yaw rate value required to allow the vehicle to return to an original lane when attempting to move the vehicle to an adjacent lane, but another vehicle in the adjacent lane threatens the corresponding vehicle, to compare the desired yaw rate value with a preset threshold value, and to assist a lane change manoeuvre of the vehicle based on the comparison result.
Abstract:
A V2X communication device includes a communication unit, an occupancy time calculation unit, a power control unit. The communication unit supports communication between a vehicle and an object. The occupancy time calculation unit calculates at least one of a radio wave occupancy time, in which data is transmitted/received through the communication unit in each communication period, and a radio wave non-occupancy time, in which the data is not transmitted/received in each communication period. The power determination unit determines whether to adjust the data transmission power based on at least one of the radio wave occupancy time and the radio wave non-occupancy time, which are calculated by the occupancy time calculation unit. The power control unit adjusts and controls the data transmission power according to the determination from the power determination unit.
Abstract:
An apparatus for detecting an emergency situation of a vehicle comprises a sensor unit, an emergency situation determining unit and a communication unit. The sensor unit constitutes with one or more of a speed sensor, a wheel sensor, an acceleration sensor, a lateral acceleration sensor, a yaw rate sensor, and a tilt sensor. The emergency situation determining unit receives a signal from the sensor unit and determines whether a driver's vehicle is in an emergency situation. The communication unit creates at least one of an emergency situation message representing the emergency situation of the driver's vehicle and a release message representing the release of the emergency situation according to the determination result of the emergency situation determining unit, transmits the message to an external emergency situation propagation device, and allows the emergency situation propagation device to propagate an emergency propagation state of the driver's vehicle to the outside.
Abstract:
Enclosed are an automatic driving controlling system and a method thereof. The automatic driving controlling system may include: a speed sensor that detects a vehicle speed; a yaw rate sensor that detects a yaw rate of the vehicle; a yaw rate calculating unit that calculates a target yaw rate that is required to drive the vehicle to a determined target point and calculates a real-time target yaw rate that is required to drive the vehicle to the target point by comparing a yaw rate that is detected by the yaw rate sensor in real time with the target yaw rate; a lateral acceleration calculating unit that calculates a target lateral acceleration that is required to drive the vehicle to the target point by using the vehicle speed and the target yaw rate, and calculates a real-time target lateral acceleration that is required to drive the vehicle to the target point by using the vehicle speed and the real-time target yaw rate; and a control determination unit that determines whether or not the real-time target lateral acceleration, which is calculated by the lateral acceleration calculating unit, is out of the range between a predetermined upper limit threshold value and a predetermined lower limit threshold value of the lateral acceleration while an automatic driving mode that automatically controls the driving of the vehicle is in progress. According to this, the driver's intention for the driving control may be recognized more accurately so that the driver can release the automatic driving mode at any time the driver desires while the active driving control mode is in progress to thereby enhance the convenience and satisfaction of the driver.
Abstract:
Disclosed is a speed control system for a curved road section, which includes: a wireless communication module that supports communication with road-side units and receives road information from the road-side units for a plurality of points on a curved road adjacent to the road-side units; an allowable speed calculation unit that calculates maximum allowable speeds that are the highest speeds at which a vehicle is driven, for the plurality of points, using the road information; an optimum speed calculation unit that calculates an optimum speed in an acceleration and deceleration range that is set in consideration of a predetermined acceleration and deceleration limit of the vehicle; and a control module that displays the optimum speed calculated by the optimum speed calculation unit to the outside, or provides the calculated optimum speed to another control system in the vehicle such that the speed of the vehicle is controlled.
Abstract:
Disclosed are an apparatus and method for calculating a distance between vehicles to receive position movement information of a subject vehicle and position movement information of an object vehicle from a global positioning system and calculate a distance between the moved subject vehicle and the moved object vehicle based on a position movement distance of the subject vehicle and a position movement distance of the object vehicle at predetermined time as the sum of a vector when calculating the position movement information of the subject vehicle and the position movement information of the object vehicle over time using a dead reckoning formula.
Abstract:
Disclosed are an emergency vehicle supporting device and system using a drone that resolve forward traffic congestion on a road on which an emergency vehicle is driving via the drone and supports securing of a driving path for the emergency vehicle. According to the present invention, an emergency vehicle supporting device mounted on the emergency vehicle generates drone control information and transmits the generated drone control information to the drone. Further, the drone flies according to the drone control information and a location change of the emergency vehicle and broadcasts an avoidance warning to surrounding vehicles around the flying drone, so that the surrounding vehicles may help the emergency vehicle secure a driving path and thus the emergency vehicle may arrive at a destination within a desired time.
Abstract:
Disclosed is a cooperative driving method including transmitting information on a merging request to a lead vehicle which is singly driving or cooperatively driving, receiving information indicating whether merging is possible from the lead vehicle which has determined whether the merging is possible, a merging step in which, when information indicating that the merging is possible is received, the follow vehicle merges, transmitting information indicating that the merging is being performed to the lead vehicle, determining whether the merging of the follow vehicle has been completed based on a longitudinal distance from a first preceding vehicle or a transverse distance from a lane line, and a merging completion step of, when it is determined that the merging has been completed, releasing the transmission of the information indicating that the merging is being performed.