摘要:
An electromechanical conversion element for converting an electric signal into mechanical displacement or converting mechanical displacement into an electric signal, includes a bottom electrode in which an alumina film, a metal film, and a conductive oxide film are sequentially laminated; an electromechanical conversion film disposed on the conductive oxide film of the bottom electrode; and a top electrode disposed on the electromechanical conversion film, wherein the metal film is solid.
摘要:
A piezoelectric thin film element includes a vibration plate, a lower electrode provided on the vibration plate and made of a conductive oxide, a piezoelectric thin film provided on the lower electrode and made of a polycrystalline substance, and an upper electrode provided on the piezoelectric thin film, wherein the lower electrode includes a titanium oxide film formed on the vibration plate, a platinum film formed on the titanium oxide film, and a conductive oxide film formed on the platinum film and, the platinum film and the conductive oxide film being a solid film with no holes.
摘要:
A piezoelectric thin film element includes a vibration plate, a lower electrode provided on the vibration plate and made of a conductive oxide, a piezoelectric thin film provided on the lower electrode and made of a polycrystalline substance, and an upper electrode provided on the piezoelectric thin film, wherein the lower electrode includes a titanium oxide film formed on the vibration plate, a platinum film formed on the titanium oxide film, and a conductive oxide film formed on the platinum film and, the platinum film and the conductive oxide film being a solid film with no holes.
摘要:
Disclosed is an electromechanical conversion element, including an electromechanical conversion film including a PZT, an upper electrode formed on a top of the electromechanical conversion film and including a first strontium ruthenium oxide, and a lower electrode formed on a bottom of the electromechanical conversion film and including a second strontium ruthenium oxide, wherein Sr-pzt/Sr-sr≦0.01, wherein Sr-pzt is a SIMS intensity for a secondary ion of strontium of the PZT at a position of ½ of a thickness of the electromechanical conversion film and Sr-sr is a SIMS intensity for a secondary ion of strontium of the second strontium ruthenium oxide at a position of ½ of a thickness of the lower electrode.
摘要:
Disclosed is an electromechanical conversion element, including an electromechanical conversion film including a PIT, an upper electrode formed on a top of the electromechanical conversion film and including a first strontium ruthenium oxide, and a lower electrode formed on a bottom of the electromechanical conversion film and including a second strontium ruthenium oxide, wherein Sr-pzt/Sr-sr≦0.01, wherein Sr-pzt is a SIMS intensity for a secondary ion of strontium of the PZT at a position of ½ of a thickness of the electromechanical conversion film and Sr-sr is a SIMS intensity for a secondary ion of strontium of the second strontium ruthenium oxide at a position of ½ of a thickness of the lower electrode.
摘要:
An electromechanical conversion element includes a lower electrode formed directly or indirectly on a substrate or a base film; an electromechanical conversion film formed on the lower electrode and including a piezoelectric body having a perovskite crystal structure preferentially oriented with a {n00} plane where n is a positive integer; and an upper electrode formed on the electromechanical conversion film. A diffraction peak at a position 2θ at which a diffraction intensity has a maximum value and which corresponds to a (X00) plane or a (00X) plane, X being 1 or 2, obtained by θ-2θ measurement in X-ray diffraction measurement, shows a trapezoidal peak shape and has two or more bending points.
摘要:
An electromechanical conversion element includes a lower electrode formed directly or indirectly on a substrate or a base film; an electromechanical conversion film formed on the lower electrode and including a piezoelectric body having a perovskite crystal structure preferentially oriented with a {n00} plane where n is a positive integer; and an upper electrode formed on the electromechanical conversion film. A diffraction peak at a position 2θ at which a diffraction intensity has a maximum value and which corresponds to a (X00) plane or a (00X) plane, X being 1 or 2, obtained by θ-2θ measurement in X-ray diffraction measurement, shows a trapezoidal peak shape and has two or more bending points.
摘要:
Disclosed is an electromechanical transducer element that includes an electromechanical transducer film formed of a complex oxide (PZT) including lead (Pb), zirconium (Zr), and titanium (Ti). The electromechanical transducer film is formed by laminating plural PZT thin films until a thickness of the formed electromechanical transducer film becomes a predetermined thickness. When an atomic weight ratio (Pb/(Zr+Ti)) of average Pb included in the formed electromechanical transducer film is denoted by Pb(avg) and an atomic weight ratio (Pb/(Zr+Ti)) of Pb in any one of laminate interfaces of the plural PZT thin films is denoted by Pb(interface), the Pb(avg) is greater than or equal to 100 atomic percentage (at %) and less than or equal to 110 atomic percentage (at %), and a fluctuation ratio ΔPb=Pb(avg)−Pb(interface) of Pb in the laminate interface is less than or equal to 20 percent.
摘要:
A manufacturing method of an electromechanical transducing device includes forming a vibration plate on a substrate; forming a first electrode made of a metal on the vibration plate; forming a second electrode made of an electrically conductive oxide on the first electrode; coating a surface modification material and carrying out surface modification of only the first electrode; forming an electromechanical transducing film on the second electrode; and forming a third electrode made of an electrically conductive oxide on the electromechanical transducing film.
摘要:
A manufacturing method of an electromechanical transducing device includes forming a vibration plate on a substrate; forming a first electrode made of a metal on the vibration plate; forming a second electrode made of an electrically conductive oxide on the first electrode; coating a surface modification material and carrying out surface modification of only the first electrode; forming an electromechanical transducing film on the second electrode; and forming a third electrode made of an electrically conductive oxide on the electromechanical transducing film.