摘要:
A method for manufacturing a piezoelectric element, in which a ferroelectric film is processed in an appropriate shape by plasma etching, is provided. A metal mask made of a metal thin film which is hard to be etched by oxygen gas is placed on an object to be processed formed by laminating a lower electrode layer and a ferroelectric film on a substrate in this order. An etching gas containing a mixture gas of the oxygen gas and a reactive gas including fluorine in a chemical structure is turned into plasma and is brought into contact with the metal mask and the object to be processed. An AC voltage is applied to an electrode disposed beneath the object to be processed so that ions in the plasma are caused to enter the object to be processed to perform anisotropic etching on the ferroelectric film.
摘要:
A method for operating a substrate processing apparatus is provided which can contain generation of particles by generating plasma in a stable manner. After a substrate is disposed in an evacuated vacuum chamber, a rare gas is initially supplied into the vacuum chamber, a voltage is applied to a plasma generating means, and plasma of the rare gas is generated. Subsequently, a reaction gas is supplied into the vacuum chamber, the reaction gas is brought into contact with the plasma of the rare gas, and plasma of the reaction gas is generated. The plasma of the reaction gas is brought into contact with the substrate; and the substrate is processed. Plasma is stably generated not by turning the reaction gas into plasma but by first turning the rare gas into plasma by the plasma generating means, and generation of particles is subsequently suppressed.
摘要:
An etching method which uses an apparatus having a chamber in which an etching gas is excited by plasma; a table arranged in the chamber which heats a substrate mounted thereon; and a frame member which includes etching-endurable material which is arranged around the table, and which has an upper surface arranged at a position lower than an upper surface of the table, the etching method including: arranging the substrate on the upper surface of the table such that a peripheral part of the substrate projects above the table; and arranging the substrate such that a ratio of a height from the upper surface of the frame member to a bottom surface of the substrate and a projecting length from a side surface of the table to an outer circumference of the substrate is 1.5 or more
摘要:
This dry cleaning method for a plasma processing apparatus is a dry cleaning method for a plasma processing apparatus that includes: a vacuum container provided with a dielectric member; a planar electrode and a high-frequency antenna that are provided outside the dielectric member; and a high-frequency power source that supplies high-frequency power to both the high-frequency antenna and the planar electrode, to thereby introduce high-frequency power into the vacuum container via the dielectric member and produce an inductively-coupled plasma, the method comprising the steps of: introducing a gas including fluorine into the vacuum container and also introducing high-frequency power into the vacuum container from the high-frequency power source, to thereby produce an inductively-coupled plasma in the gas including fluorine; and by use of the inductively-coupled plasma, removing a product including at least one of a precious metal and a ferroelectric that is adhered to the dielectric member.
摘要:
A plasma processing apparatus of the present invention performs on a substrate to be processed, plasma processing with a noble metal material and a ferroelectric material and is provided with a constituent member that is exposed to plasma while being heated. The constituent member is formed with an aluminum alloy of at least 99% aluminum purity.
摘要:
This dry cleaning method for a plasma processing apparatus is a dry cleaning method for a plasma processing apparatus that includes: a vacuum container provided with a dielectric member; a planar electrode and a high-frequency antenna that are provided outside the dielectric member; and a high-frequency power source that supplies high-frequency power to both the high-frequency antenna and the planar electrode, to thereby introduce high-frequency power into the vacuum container via the dielectric member and produce an inductively-coupled plasma, the method comprising the steps of: introducing a gas including fluorine into the vacuum container and also introducing high-frequency power into the vacuum container from the high-frequency power source, to thereby produce an inductively-coupled plasma in the gas including fluorine; and by use of the inductively-coupled plasma, removing a product including at least one of a precious metal and a ferroelectric that is adhered to the dielectric member.
摘要:
An etching technique suitable for miniaturization is provided. An inorganic film is formed on an object to be subjected, the object having a lower electrode film, a dielectric film, and an upper electrode film laminated in that order on a substrate. A patterned organic resist film is disposed on the surface of the inorganic film. The inorganic film, upper electrode film, and the dielectric film are etched using the organic resist film as a mask, and then, the organic resist film is removed with the gas used to etch the lower electrode film; and the lower electrode film is etched using the inorganic film as a mask that has been exposed. Since the film serving as a mask is not re-formed, a fine pattern can be produced with good precision.
摘要:
[Object] To provide a method of manufacturing a dielectric device and an ashing method that are capable of suppressing the occurrence of resist residue.[Solving Means] In the ashing method, a base material having a surface etched by a plasma of chlorine gas or fluorocarbon gas via a resist mask (6) formed of an organic material is disposed in a chamber, bombardment treatment is performed on the resist mask (6) by using oxygen ions in the chamber, and the resist mask is removed by using oxygen radicals in the chamber. According to the ashing method described above, etching reactants adhering to the surface of the resist mask are physically removed by the bombardment treatment using oxygen ions. Thus, it is possible to suppress the occurrence of resist residue due to the etching reactants and efficiently remove the resist mask from the surface of the base material.