摘要:
A charged particle separation apparatus that separates ionized gas clusters is disclosed. The charged particle separation apparatus includes three or more electric field applying parts arranged in an incident direction of an ionized gas cluster, wherein each of the electric field applying parts includes a pair of electrodes; an electric power source configured to supply alternating-current electric voltages to the three or more electric field applying parts in such a manner that an alternating-current electric voltage applied across one pair of the electrodes of one of the three or more electric field applying parts is different in phase from an alternating-current voltage applied across another pair of the electrodes of an adjacent one of the three or more electric field applying parts; and a plate including an opening in an extension of the incident direction.
摘要:
A charged particle separation apparatus that separates ionized gas clusters is disclosed. The charged particle separation apparatus includes an electric field applying part including two electrodes across which electric voltage is applied in order to generate electric field between the two electrodes thereby deflecting a trajectory of the ionized gas cluster, the electrodes including one of an opening and a void; and a plate opening that allows the ionized gas cluster whose trajectory is deflected by the electric field applying part to go therethrough.
摘要:
A charged particle separation apparatus that separates ionized gas clusters is disclosed. The charged particle separation apparatus includes an electric field applying part including two electrodes across which electric voltage is applied in order to generate electric field between the two electrodes thereby deflecting a trajectory of the ionized gas cluster, the electrodes including one of an opening and a void; and a plate opening that allows the ionized gas cluster whose trajectory is deflected by the electric field applying part to go therethrough.
摘要:
An ultra precise polishing method includes controlling an irradiation time of a surface position of an object to be processed irradiated by a gas cluster ion beam. A profile is created and polished on the surface of the object to be processed by controlling irradiation of the gas cluster ion beam. An ultra precise polishing apparatus includes an irradiating device for irradiating a surface of an object to be processed by a gas cluster ion beam. A positioning device is provided for changing a surface position of the object to be processed, which is irradiated by the gas cluster ion beam by moving the irradiating device and the object to be processed relative to each other. A control device is provided for controlling the irradiation time of a surface position of the object to be processed irradiated by the gas cluster ion beam.
摘要:
The present invention has its object to obtain an SiC monitor wafer which can flatten the surface until particle detection is possible. SiC of a crystal system 3C is deposited on a substrate by a CVD (Chemical Vapor Deposition) method, and the SiC is detached from a substrate. After the SiC surface is flattened by using mechanical polishing alone or in combination with CMP (Chemo Mechanical Polishing), GCIB (Gas Cluster Ion Beam) is irradiated to the surface until the surface roughness becomes Ra=0.5 nm or less and the impurity density of the wafer surface becomes 1*1011 atoms/cm2 or less to produce the SiC monitor wafer.
摘要翻译:本发明的目的是获得可以使表面变平的SiC监测晶片,直到可以进行粒子检测。 通过CVD(化学气相沉积)法将晶体系统3C的SiC沉积在衬底上,并且将SiC从衬底上分离。 在通过单独使用机械抛光或与CMP(Chemo Mechanical Polishing)组合使SiC表面平坦化之后,将GCIB(气体簇离子束)照射到表面,直到表面粗糙度变为Ra = 0.5nm以下,杂质浓度 晶片表面变为1×1011原子/ cm 2或更小以产生SiC监测晶片。
摘要:
The present invention has its object to obtain an SiC monitor wafer which can flatten the surface until particle detection is possible. SiC of a crystal system 3C is deposited on a substrate by a CVD (Chemical Vapor Deposition) method, and the SiC is detached from a substrate. After the SiC surface is flattened by using mechanical polishing alone or in combination with CMP (Chemo Mechanical Polishing), GCIB (Gas Cluster Ion Beam) is irradiated to the surface until the surface roughness becomes Ra=0.5 nm or less and the impurity density of the wafer surface becomes 1*1011 atoms/cm2 or less to produce the SiC monitor wafer.
摘要:
A method of manufacturing a semiconductor device comprising the steps of: ionizing decaborane; and implanting ionized decaborane into a silicon wafer. Solid decaborane can be vaporized in a reduced pressure atmosphere or by heating. A single decaborane molecule can provide 10 boron atoms while the acceleration energy per each boron atom can be reduced to about 1/10 of the acceleration energy for a decaborane molecule.
摘要:
Irradiation time of a surface position of an object to be processed by a gas cluster ion beam is controlled, and creation and polishing of a desired surface profile of the object to be processed is achieved by controlled irradiation of the gas cluster ion beam.
摘要:
A solar cell that has a photoactive region; a Lambertian surface on the topside of the photoactive region; and a photonic crystal on the backside of the photoactive region.