摘要:
A method for manufacturing a catalyst layer for a fuel cell support for a catalyst layer comprises the steps of vapor-growing a carbonaceous porous material having a nano-size structure, such as carbon nanowalls (CNWs), and supporting and dispersing a catalyst component and/or an electrolyte component on the support for a catalyst layer. The method simplifies the process for manufacturing an electrode layer for fuel cells and improves the dispersibility of the catalyst component and the electrolyte, whereby the generation efficiency of a fuel cell can be improved.
摘要:
A fuel cell structure comprises a diffusion layer and/or a catalyst layer which are made of a carbonaceous porous material having a nano-size structure, such as carbon nanowall (CNW). A method of manufacturing the structure is also disclosed. The structure and method simplify the process of manufacturing a fuel cell electrode comprised of an electrode catalyst layer and a gas diffusion layer. The electrical conductivity of the catalyst layer is increased and the diffusion efficiency of the diffusion layer is improved, whereby the electricity generation efficiency of the fuel cell can be improved.
摘要:
The degree of freedom in the shape of channels in a separator is increased, enabling an optimum gas channel to be designed, enabling a sufficient supply of gas below gas channel ribs, and improving cell performance through the reduction in diffusion polarization. Drainage property is also improved and flooding is prevented, thereby reducing diffusion polarization and improving cell performance. Cell performance is also improved through the reduction of contact resistance. A fuel cell separator comprises a separator substrate on which gas channel ribs are formed through vapor-phase growth of a carbon-based porous material with a nanosize structure. An electrode structure for a fuel cell, methods of manufacturing the separator and the fuel cell, and a solid polymer fuel cell comprising the electrode structure.
摘要:
The degree of freedom in the shape of channels in a separator is increased, enabling an optimum gas channel to be designed, enabling a sufficient supply of gas below gas channel ribs, and improving cell performance through the reduction in diffusion polarization. Drainage property is also improved and flooding is prevented, thereby reducing diffusion polarization and improving cell performance. Cell performance is also improved through the reduction of contact resistance. A fuel cell separator comprises a separator substrate on which gas channel ribs are formed through vapor-phase growth of a carbon-based porous material with a nanosize structure. An electrode structure for a fuel cell, methods of manufacturing the separator and the fuel cell, and a solid polymer fuel cell comprising the electrode structure.
摘要:
Releasability of a mold and a resin layer during nanoimprinting is improved, thereby improving the durability of the mold. A nanoimprint mold for resin molding comprising a carbon nanowall layer provided on the surface thereof, a method of forming a nanopattern using the mold, and a resin-molded product obtained by the method.
摘要:
A fuel cell structure comprises a diffusion layer and/or a catalyst layer which are made of a carbonaceous porous material having a nano-size structure, such as carbon nanowall (CNW). A method of manufacturing the structure is also disclosed. The structure and method simplify the process of manufacturing a fuel cell electrode comprised of an electrode catalyst layer and a gas diffusion layer. The electrical conductivity of the catalyst layer is increased and the diffusion efficiency of the diffusion layer is improved, whereby the electricity generation efficiency of the fuel cell can be improved.
摘要:
Provided is a method for controlling a carbon nanowall (CNW) structure having improved corrosion resistance against high potential by varying the spacing between the carbon nanowall (CNW) walls so that its surface area and crystallinity are controlled. Also provided is a carbon nanowall (CNW) with a high surface arca and a carbon nanowall (CNW) with a high crystallinity, both of which have a controlled structure. According to the present invention, provided are: (1) a carbon nanowall, characterized by having a wall surface area of 50 cm2/cm2-substrate·μm or more; (2) a carbon nanowall, characterized by having a crystallinity such that the D band half value width in the Raman spectrum measured with an irradiation laser wavelength of 514.5 nm is 85 cm−1 or less: and (3) a carbon nanowall, characterized by having not only a wall surface area of 50 cm2/cm2-substrate·μm or more but also a crystallinity such that the D-band half value width in the Raman spectrum measured with an irradiation laser wavelength of 14.5 nm is 85 cm−1 or less.
摘要翻译:提供了一种通过改变碳纳米壁(CNW)壁之间的间距来控制其表面积和结晶度来控制具有改善的高电位耐腐蚀性的碳纳米壁(CNW)结构的方法。 还提供具有高表面积的碳纳米壁(CNW)和具有高结晶度的碳纳米壁(CNW),两者都具有受控的结构。 根据本发明,提供:(1)一种碳纳米壁,其特征在于,具有50cm 2 / cm 2以上的基板的壁面积以上; (2)碳纳米壁,其特征在于具有结晶度使得以514.5nm的照射激光波长测量的拉曼光谱中的D带半值宽度为85cm -1以下:(3)碳纳米壁,其特征在于, 通过不仅具有50cm 2 / cm 2以上的壁面积等于或大于50的壁面积,而且结晶度使得以14.5nm的照射激光波长测量的拉曼光谱中的D带半值宽度为85cm -1 或更少。
摘要:
A positive electrode (10) for a lithium secondary battery, including a positive electrode collector (20), and a positive electrode active substance layer (30) that is supported on the positive electrode collector (20) and includes carbon nanowalls (32) which are formed on the positive electrode collector (20), and a positive electrode active substance (36) which is supported on the carbon nanowalls (32).
摘要:
A negative electrode (10) for a lithium secondary battery, including a negative electrode collector (20), and a negative electrode active substance layer (30) that is supported on the negative electrode collector (20) and includes carbon nanowalls (32) which are formed on the negative electrode collector (20), and a negative electrode active substance (36) which is supported on the carbon nanowalls (32).
摘要:
A negative electrode (10) for a lithium secondary battery, including a negative electrode collector (20), and a negative electrode active substance layer (30) that is supported on the negative electrode collector (20) and includes carbon nanowalls (32) which are formed on the negative electrode collector (20), and a negative electrode active substance (36) which is supported on the carbon nanowalls (32).