摘要:
An etching method of the present invention includes a first and a second process. In the first process, pattern widths of a pre-patterned mask layer are increased by depositing plasma reaction products on sidewalls of the mask layer. In the second process, a layer to be etched is etched by using the mask layer as a mask having increased the pattern widths. Therefore, mask layers having different pattern densities exist in the same wafer and pattern widths of mask layers patterned through a photolithography process are uneven according to pattern densities, each pattern width of the mask layers can be made uniform. Accordingly, the pattern widths of the layer can be made uniform over an entire wafer.
摘要:
An etching method of the present invention includes a first and a second process. In the first process, pattern widths of a pre-patterned mask layer are increased by depositing plasma reaction products on sidewalls of the mask layer. In the second process, a layer to be etched is etched by using the mask layer as a mask having increased the pattern widths. Therefore, mask layers having different pattern densities exist in the same wafer and pattern widths of mask layers patterned through a photolithography process are uneven according to pattern densities, each pattern width of the mask layers can be made uniform. Accordingly, the pattern widths of the layer can be made uniform over an entire wafer.
摘要:
A plasma etching apparatus is arranged to perform main etching for etching a poly-crystalline silicon film by use of Cl2/SF6/N2 plasma obtained by exciting Cl2 gas, SF6 gas, and N2 gas, and over etching for etching the poly-crystalline silicon film by use of Cl2/HBr/CF4 plasma obtained by exciting Cl2 gas, HBr gas, and CF4 gas. In the main etching, N2 gas is added to suppress formation of roughness on a poly-crystalline silicon surface and attain a sufficient etching rate.
摘要翻译:等离子体蚀刻装置被布置成通过使用Cl 2/2 / SF 6 / N 2 N来进行用于蚀刻多晶硅膜的主蚀刻 通过激发Cl 2 O 2气体,SF 6气体和N 2气体获得的等离子体,以及用于蚀刻多晶硅膜的过蚀刻 使用通过激发Cl 2气体,HBr气体和CF 4 SUB而获得的Cl 2 2 / HBr / CF 4 H 2等离子体 气体。 在主蚀刻中,添加N 2气体以抑制多晶硅表面的粗糙度的形成,并获得足够的蚀刻速率。
摘要:
A tungsten silicide layer (104) is etched by plasma etching using Cl2+O2 gas as etching gas. When etching of the tungsten silicide layer (104) is ended substantially, etching gas is switched to Cl2+O2+NF3 and over etching is performed by plasma etching. Etching process is ended under a state where a polysilicon layer (103) formed beneath the tungsten silicide layer (104) is slightly etched uniformly. Residual quantity of the polysilicon layer (103) can be made uniform as compared with prior art and a high quality semiconductor device can be fabricated stably.
摘要:
A substrate processing method includes performing a deposition process of depositing a thin film on the substrate while depressurizing the inside of the processing chamber and introducing the gas thereinto; and, while the deposition process is being performed, irradiating light, which is transmitted through a monitoring window installed at the processing chamber, toward the inside of the processing chamber through the monitoring window, and monitoring a reflection light intensity of reflection light by receiving the reflection light through the monitoring window. The substrate processing method further includes measuring a temporal variation in the reflection light intensity during the deposition process and calculating a termination time of the deposition process based on a measurement value of the temporal variation; and terminating the deposition process by setting the termination time as an end point of the deposition process.
摘要:
A substrate processing method includes performing a deposition process of depositing a thin film on the substrate while depressurizing the inside of the processing chamber and introducing the gas thereinto; and, while the deposition process is being performed, irradiating light, which is transmitted through a monitoring window installed at the processing chamber, toward the inside of the processing chamber through the monitoring window, and monitoring a reflection light intensity of reflection light by receiving the reflection light through the monitoring window. The substrate processing method further includes measuring a temporal variation in the reflection light intensity during the deposition process and calculating a termination time of the deposition process based on a measurement value of the temporal variation; and terminating the deposition process by setting the termination time as an end point of the deposition process.
摘要:
A plasma etching apparatus is arranged to perform main etching for etching a poly-crystalline silicon film by use of Cl2/SF6/N2 plasma obtained by exciting Cl2 gas, SF6 gas, and N2 gas, and over etching for etching the poly-crystalline silicon film by use of Cl2/HBr/CF4 plasma obtained by exciting Cl2 gas, HBr gas, and CF4 gas. In the main etching, N2 gas is added to suppress formation of roughness on a poly-crystalline silicon surface and attain a sufficient etching rate.
摘要:
A tungsten silicide layer (104) is etched by plasma etching using Cl2+O2 gas as etching gas. When etching of the tungsten silicide layer (104) is ended substantially, etching gas is switched to Cl2+O2+NF3 and over etching is performed by plasma etching. Etching process is ended under a state where a polysilicon layer (103) formed beneath the tungsten silicide layer (104) is slightly etched uniformly. Residual quantity of the polysilicon layer (103) can be made uniform as compared with prior art and a high quality semiconductor device can be fabricated stably.
摘要翻译:通过使用Cl 2 O 2 + O 2气体作为蚀刻气体的等离子体蚀刻来蚀刻硅化钨层(104)。 当钨硅化物层(104)的蚀刻基本上结束时,蚀刻气体被切换到Cl 2 + O 2 + N N 3 3并过度 通过等离子体蚀刻进行蚀刻。 在钨硅化物层(104)下方形成的多晶硅层(103)被均匀地微蚀刻的状态下结束蚀刻处理。 与现有技术相比,多晶硅层(103)的剩余量可以均匀,并且可以稳定地制造高质量的半导体器件。
摘要:
The present invention is a method of manufacturing a semiconductor device from a layered body including: a semiconductor substrate; a high dielectric film formed on the semiconductor substrate; and an SiC-based film formed on a position upper than the high dielectric film, the SiC-based film having an anti-reflective function and a hardmask function. The present invention comprises a plasma-processing step for plasma-processing the SiC-based film and the high dielectric film to modify the SiC-based film and the high dielectric film by an action of a plasma; and a cleaning step for wet-cleaning the SiC-based film and the high dielectric film modified in the plasma-processing step to collectively remove the SiC-based film and the high dielectric film.
摘要:
A fine pattern forming method includes the first step of depositing a plasma reaction products on a sidewall of a patterned mask layer to increase a pattern width thereof, the second step of etching a first etching target layer by using as a mask the mask layer, the pattern width of which has been increased, the third step of filling with a mask material a space formed in the etched first etching target layer, the fourth step of etching the etched first etching target layer leaving the mask material filling the space, and the fifth step of etching a second etching target layer by using a remaining mask material as a mask.