Optical modulation device
    2.
    发明授权
    Optical modulation device 失效
    光调制装置

    公开(公告)号:US4913506A

    公开(公告)日:1990-04-03

    申请号:US311218

    申请日:1989-02-16

    摘要: An optical modulation device is disclosed in which a difference between the photon energy of incident light and the band-gap energy of the modulation waveguide layer is set to a value greater than 50 meV to thereby suppress the degradation of the modulation voltage and the modulation band width which is caused by an increase in the intensity of incident light and in that the optical modulation device is formed in a predetermined length to thereby decrease the modulation voltage. The energy gap of the optical waveguide layer of the optical modulation device is varied continuously or discontinuously in the direction of its thickness to provide a constant absorption coefficient thickwise of the optical waveguide layer so that the electric field intensity distribution in the optical waveguide layer is compensated for, by which overlap of the light distribution and the absorption coefficient is increased so as to decrease the modulation voltage and broaden the modulation band by the reduction of the length of the device. The composition, thickness and stripe width of the optical waveguide layer are changed so that its absorption coefficient increases from the light receiving end face of the optical waveguide layer toward its light emitting end face, thereby making the number of carriers absorbed per unit length substantially constant in the direction of travel of light.

    摘要翻译: 公开了一种光调制装置,其中将入射光的光子能量与调制波导层的带隙能量之间的差设定为大于50meV的值,从而抑制调制电压和调制带的劣化 由入射光强度的增加引起的宽度,并且光调制装置形成为预定长度,从而降低调制电压。 光调制装置的光波导层的能隙在其厚度方向上连续或不连续地变化,以提供光波导层厚度的恒定吸收系数,使得光波导层中的电场强度分布得到补偿 由此,增加了光分布和吸收系数的重叠,从而降低了调制电压,并且通过减小器件的长度来扩大调制频带。 改变光波导层的组成,厚度和条纹宽度,使得其吸收系数从光波导层的光接收端面向其发光端面增加,从而使每单位长度吸收的载流子基本恒定 在光的行进方向。

    Optical modulation element
    3.
    发明授权
    Optical modulation element 失效
    光调制元件

    公开(公告)号:US4946243A

    公开(公告)日:1990-08-07

    申请号:US387511

    申请日:1989-07-28

    CPC分类号: G02F1/025 G02F2001/0157

    摘要: An optical modulation element is disclosed which has, on a substrate directly or through a lower clad layer, an optical waveguide layer of a low impurity concentration, an upper clad layer of a refractive index smaller than that of the optical waveguide layer, and electrodes, and in which light of a constant intensity incident on a light incident end face of the optical waveguide layer is intensity-modulated by changing the absorption coefficient of the optical waveguide layer by means of an electric field applied thereto across the electrodes so that the thus modulated light is emitted from a light emitting end face of the optical waveguide layer. In accordance with the present invention, a plurality of low impurity concentration regions and a plurality of high impurity concentration regions are disposed alternately with each other in contact with at least one of the lower and upper clad layers in the direction of travel of light in such a manner that the distribution density of the plurality of high impurity concentration regions increases in the direction of travel of light.

    Optical communication system and optical transmitting device
    5.
    发明授权
    Optical communication system and optical transmitting device 失效
    光通信系统和光传输设备

    公开(公告)号:US5786918A

    公开(公告)日:1998-07-28

    申请号:US575174

    申请日:1995-12-19

    CPC分类号: H04B10/25077 H04J14/08

    摘要: An optical communication system of a construction wherein the average wavelength dispersion value of the transmission optical fiber used, the optical output intensity of each optical amplifier repeater inserted in the transmission optical fiber and the widths of return-to-zero optical pulses transmitted over the transmission line are determined so as to compensate for the pulse compression effect by the nonlinear optical effect produced on the optical pulses by the pulse spreading effect by the wavelength dispersion effect. An optical multiplexer in the optical transmitting device time-division multiplexes the return-to-zero optical pulses, and the optical multiplexed signal is provided as an alternating-amplitude optical signal with the amplitudes of the return-to-zero optical pulses alternated.

    摘要翻译: 一种结构的光通信系统,其中使用的传输光纤的平均波长色散值,插入在传输光纤中的每个光放大器中继器的光输出强度以及通过传输传输的归零光脉冲的宽度 线被确定为通过由脉冲扩散效应通过波长色散效应在光脉冲上产生的非线性光学效应来补偿脉冲压缩效应。 光发射装置中的光复用器对归零光脉冲进行时分复用,并且光复用信号被提供为交替振幅的光信号,并且返回到零的光脉冲的幅度交替。

    Pn junction optical modulating device having a buffer layer with small
energy gap
    6.
    发明授权
    Pn junction optical modulating device having a buffer layer with small energy gap 失效
    具有具有小能隙的缓冲层的Pn结光调制装置

    公开(公告)号:US4991921A

    公开(公告)日:1991-02-12

    申请号:US442521

    申请日:1989-11-27

    IPC分类号: G02F1/015 G02F1/025

    CPC分类号: G02F1/025 G02F2001/0157

    摘要: An optical modulating device is disclosed which has, on a substrate directly or via a lower cladding layer, an optical waveguide layer, an upper cladding layer of a refractive index smaller than that of the optical waveguide layer and a pair of electrodes for applying an electric field across the substrate and the upper cladding layer and in which the absorption coefficient for incident light of a fixed intensity incident to the optical waveguide layer is varied by the electric field applied across the pair of electrodes to perform the modulation of the light and the modulated light is emitted from a light emitting end face of the optical waveguide layer. In accordance with the present invention, a pn junction is formed in the upper cladding layer and at least one buffer layer of an energy gap smaller than that of the upper cladding layer but larger than that of the optical waveguide layer is interposed between the upper cladding layer and the optical waveguide layer.

    摘要翻译: 公开了一种光学调制装置,其在衬底上直接或经由下包层,光波导层,折射率小于光波导层的折射率的上包层和用于施加电的一对电极 并且其中入射到光波导层的固定强度的入射光的吸收系数由施加在该对电极上的电场而变化,以执行光的调制和被调制的 光从光波导层的发光端面发射。 根据本发明,在上部包层中形成pn结,并且至少一个能量间隙的缓冲层比上部包覆层的能隙小,但是比光波导层大的缓冲层插入在上部包层 层和光波导层。

    Wavelength division multiplexed optical processing device and optical communication transmission path
    8.
    发明授权
    Wavelength division multiplexed optical processing device and optical communication transmission path 失效
    波分复用光处理装置和光通信传输路径

    公开(公告)号:US06181449B2

    公开(公告)日:2001-01-30

    申请号:US09032537

    申请日:1998-02-27

    IPC分类号: H04J1402

    摘要: A wavelength division multiplexed optical processing device and an optical communication transmission path which are capable of significantly improving the transmission characteristic of wavelength division multiplexed optical signals. A wavelength division multiplexed optical processing device is formed by a first arrayed optical waveguide for demultiplexing entered wavelength division multiplexed optical signals, and outputting demultiplexed optical signals; a plurality of correction units for correcting respective optical signals demultiplexed by the first arrayed optical waveguide; and a second arrayed optical waveguide for multiplexing optical signals corrected by the correction unit, and outputting multiplexed optical signals. An optical communication transmission path is formed by an optical transmission path; and at least one wavelength division multiplexed optical processing device using an arrayed optical waveguide having a transmission wavelength characteristic with a flat top shape, which is inserted into the optical transmission path at a prescribed interval.

    摘要翻译: 能够显着提高波分复用光信号的传输特性的波分复用光处理装置和光通信传输路径。 波分复用光处理装置由第一阵列光波导形成,用于对输入的波分复用光信号进行解复用,并输出解复用的光信号; 多个校正单元,用于校正由第一阵列光波导解复用的各个光信号; 以及第二阵列光波导,用于复用由所述校正单元校正的光信号,并且输出复用的光信号。 光通信传输路径由光传输路径形成; 以及使用具有平坦顶部形状的透射波长特性的排列光波导的至少一个波分复用光学处理装置,其以规定的间隔插入到光传输路径中。

    Optical receiver device for dark soliton lightwave
    9.
    发明授权
    Optical receiver device for dark soliton lightwave 失效
    用于暗孤子光波的光接收器

    公开(公告)号:US5892608A

    公开(公告)日:1999-04-06

    申请号:US770455

    申请日:1996-12-20

    CPC分类号: H04B10/25077 H04J14/08

    摘要: An optical transmitter which reverses the ON-OFF state of the optical intensity of a bright soliton lightwave and generates a dark soliton lightwave having an optical phase shift, an optical receiver for the dark soliton lightwave, and a superfast, high-capacity optical transmission system which is capable of increasing the soliton pulse array density while suppressing timing jitter. The optical transmission system is provided with the optical transmitter which transmits a dark soliton lightwave having digital information, the optical receiver which receives the dark soliton lightwave as a return-to-zero pulse and a transmission optical fiber interconnecting the transmitter and the receiver. The system has a construction in which the transmission optical fiber has, at the wavelength of the transmission lightwave, a normal dispersion value which makes negative the average wavelength dispersion value over the entire length of the optical fiber, and the average value of the wavelength dispersion value and the optical output intensity of the transmission optical fiber have values so that a non-linear optical effect and a wavelength dispersion effect, which are exerted on the transmission lightwave, are balanced with each other.

    摘要翻译: 一种光发射器,其反转明亮的孤子光波的光强度的ON-OFF状态并产生具有光学相移的暗孤子光波,用于暗孤子光波的光接收器,以及超快大容量光传输系统 其能够在抑制定时抖动的同时增加孤子脉冲阵列密度。 光传输系统设置有发射具有数字信息的暗孤子光波的光发射机,接收暗孤子光波作为归零脉冲的光接收机和互连发射机和接收机的传输光纤。 该系统具有这样的结构,其中传输光纤在传输光波长的波长处具有在光纤的整个长度上使平均波长色散值为负的正常色散值,并且波长色散的平均值 值和发射光纤的光输出强度具有使得施加在透射光波上的非线性光学效应和波长色散效应彼此平衡的值。

    Optical amplifying-repeating transmission system
    10.
    发明授权
    Optical amplifying-repeating transmission system 失效
    光放大重复传输系统

    公开(公告)号:US5629795A

    公开(公告)日:1997-05-13

    申请号:US521973

    申请日:1995-08-31

    CPC分类号: H04B10/25253

    摘要: An optical amplifying-repeating transmission system is disclosed which is composed of an optical fiber for transmitting a lightwave signal with digital information added to return-to-zero lightwave pulses and a plurality of optical amplifying repeaters inserted in the optical fiber for transmission use. The mean value of wavelengths at which the wavelength dispersion of the optical fiber is zero is smaller than the wavelength of the lightwave signal which is transmitted over the system. The accumulated wavelength dispersion value of the optical fiber tends to increase with the distance of transmission, from a macroscopic viewpoint. The optical fiber for transmission is divided into a plurality of sections. In accordance with the accumulated wavelength dispersion value of the optical fiber in each section except at least the last one, a wavelength dispersion medium, which locally changes the wavelength dispersion in a manner to cancel the accumulated wavelength dispersion in the section at the wavelength of the lightwave signal, is inserted in the section to eliminate the accumulation of the timing jitter.

    摘要翻译: 公开了一种光放大重复传输系统,其由用于传输光波信号的光纤与添加到归零光波脉冲的数字信息以及插入光纤中的多个光放大中继器组成,用于传输使用。 光纤的波长色散为零的波长的平均值小于在系统上传输的光波信号的波长。 从宏观的观点来看,光纤的累积波长色散值随着透射距离而增加。 用于传输的光纤被分成多个部分。 根据除了至少最后一个部分之外的每个部分中的光纤的累积波长色散值,波长色散介质以局部改变波长色散的方式来消除在波长的波长处的部分中的累积波长色散 光波信号,插入该部分以消除定时抖动的累积。