摘要:
[Problems] To provide an ion-exchange membrane using an inexpensive nonwoven fabric sheet as a base sheet, featuring excellent properties such as strength, dimensional stability and shape stability, effectively suppressing undulation when it is brought into contact with the electrolyte, and having a low membrane resistance and stable properties.[Means for Solution] An ion-exchange membrane comprising a nonwoven fabric sheet 1 and an ion-exchange resin coating 3 formed on one surface of the nonwoven fabric sheet 1, the nonwoven fabric sheet 1 having a fiber layer structure that includes long filament layers 5 of a fiber diameter of 8 to 30 μm on both surfaces thereof and an extra-fine filament layer 7 of a fiber diameter of not more than 5 μm as an intermediate layer formed by melt-adhesion of fibers between the long filament layers 5.
摘要:
An object of the present invention is to provide a composite membrane support composed of a dry process thermoplastic resin filaments nonwoven fabric having a significantly high uniformity to enable formation of a porous layer free from strike-through or a defect such as pinhole at the film formation, producing no skin layer defect at the formation of a skin layer, and being excellent in the mechanical strength and dimensional stability at high temperatures, and a high-performance composite membrane and a composite membrane element each using the composite membrane support. The composite membrane support of the present invention is a laminate dry process thermoplastic resin filaments nonwoven fabric comprising three or more layers containing at least a meltblown fiber layer as an interlayer and spunbond fiber layers on both sides of the interlayer, wherein the average value of air flow resistance is from 2.0 to 30.0 kPa·s/m and the ratio between the average value and the standard deviation of air flow resistance is 0.6 or less.
摘要:
An object of the present invention is to provide a composite membrane support composed of a dry process thermoplastic resin filaments nonwoven fabric having a significantly high uniformity to enable formation of a porous layer free from strike-through or a defect such as pinhole at the film formation, producing no skin layer defect at the formation of a skin layer, and being excellent in the mechanical strength and dimensional stability at high temperatures, and a high-performance composite membrane and a composite membrane element each using the composite membrane support. The composite membrane support of the present invention is a laminate dry process thermoplastic resin filaments nonwoven fabric comprising three or more layers containing at least a meltblown fiber layer as an interlayer and spunbond fiber layers on both sides of the interlayer, wherein the average value of air flow resistance is from 2.0 to 30.0 kPa·s/m and the ratio between the average value and the standard deviation of air flow resistance is 0.6 or less.
摘要:
A three-dimensional plexifilamentary fiber (26) of a high-density polyethylene group obtained by supplying a polymer to a dissolving area in a state such that the polymer is melted by a heated screw extruder (compressing zone 13, metering zone 14 to 16), supplying a solvent (CCl.sub.3 F) into the melted polymer (feed opening 18), mixing and dissolving the polymer and the solvent to make a polymer solution, and extruding the polymer solution from a nozzle (24 in FIG. 24 ) arranged in the dissolving area into a low pressure area. A nonwoven fabric is obtained through a process in which the fiber (26) is spread by striking the fiber against a skirt portion (33) having a fiber swinging face (34) and a cushioning face (35), and this nonwoven fabric has an excellent strength, covering property, and whiteness.
摘要:
Disclosed is an electromagnetic shielding sheet that has a smaller increase in the thickness of a base after the formation of a metal coating film when compared with conventional electromagnetic shielding sheets, and which has excellent electromagnetic wave shielding properties despite a small amount of adhered metal. According to the present invention, the electromagnetic shielding sheet can endure metal working processes and has high electromagnetic wave shielding properties, resulting in a thin, very flexible fabric sheet. Specifically disclosed is an electromagnetic shielding sheet which is composed of a laminated non-woven fabric that has at least a first layer and a second layer, and which is characterized in that the first layer is a layer of thermoplastic synthetic fibers having a fiber diameter of 6 μm to 50 μm, the second layer is a layer of ultrafine fibers having a fiber diameter of 0.1 μm to 5.0 μm, and a metal is adhered to at least one surface of the sheet.
摘要:
Disclosed is an electromagnetic shielding sheet that has a smaller increase in the thickness of a base after the formation of a metal coating film when compared with conventional electromagnetic shielding sheets, and which has excellent electromagnetic wave shielding properties despite a small amount of adhered metal. According to the present invention, the electromagnetic shielding sheet can endure metal working processes and has high electromagnetic wave shielding properties, resulting in a thin, very flexible fabric sheet. Specifically disclosed is an electromagnetic shielding sheet which is composed of a laminated non-woven fabric that has at least a first layer and a second layer, and which is characterized in that the first layer is a layer of thermoplastic synthetic fibers having a fiber diameter of 6 μm to 50 μm, the second layer is a layer of ultrafine fibers having a fiber diameter of 0.1 μm to 5.0 μm, and a metal is adhered to at least one surface of the sheet.
摘要:
In the network system, which includes a scanner apparatus and a printer apparatus connected to network, the scanner apparatus scan the image of a plurality of pages of an original document, and the scanned image data is transmitted to the printer apparatus before the completion of scanning all of the plurality of original document pages.
摘要:
A three-dimensional plexifilamentary fiber (26) of a high-density polyethylene group obtained by supplying a polymer to a dissolving area in a state such that the polymer is melted by a heated screw extruder (compressing zone 13, metering zone 14 to 16), supplying a solvent (CCl.sub.3 F) into the melted polymer (feed opening 18), mixing and dissolving the polymer and the solvent to make a polymer solution, and extruding the polymer solution from a nozzle (24 in FIG. 24) arranged in the dissolving area into a low pressure area. A nonwoven fabric is obtained through a process in which the fiber (26) is spread by striking the fiber against a skirt portion (33) having a fiber swinging face (34) and a cushioning face (35), and this nonwoven fabric has an excellent strength, covering property, and whiteness.
摘要:
There is provided a high performance solid electrolytic capacitor that can be manufactured stably. The present invention provides the solid electrolytic capacitor comprising an anode foil and a cathode foil, and a separator arranged between the anode foil and the cathode foil, wherein the anode foil, the cathode foil, and the separator are wound around, so that the separator is intervened between the anode foil and the cathode foil, the anode foil has a dielectric oxide film layer, the separator comprises a solid electrolyte and a nonwoven fabric holding the solid electrolyte, the nonwoven fabric composing the separator is a laminated nonwoven fabric having at least two layers of the nonwoven fabric layers, and the laminated nonwoven fabric comprises a nonwoven fabric layer (layer I) composed of ultra fine fiber having a fiber diameter of 0.1 to 4 μm, and a nonwoven fabric layer (layer II) composed of a thermoplastic resin fiber having a fiber diameter of 6 to 30 μm.
摘要:
In the network system, which includes a scanner apparatus and a printer apparatus connected to network, the scanner apparatus scan the image of a plurality of pages of an original document, and the scanned image data is transmitted to the printer apparatus before the completion of scanning all of the plurality of original document pages.