摘要:
A beam delivery system of a projection exposure system comprises a laser generating a beam of laser light from a plurality of longitudinal laser modes in a cavity, wherein light generated by a single longitudinal laser mode has an average line width λlat, wherein the laser light of the beam has, at each of respective lateral positions of the beam, a second line width λlat corresponding to lateral laser modes, and wherein the laser light of the beam has, when averaged over a whole cross section thereof, a line width λb corresponding to plural lateral laser modes, and wherein λm
摘要:
A beam delivery system of a projection exposure system comprises a laser generating a beam of laser light from a plurality of longitudinal laser modes in a cavity, wherein light generated by a single longitudinal laser mode has an average line width λlat, wherein the laser light of the beam has, at each of respective lateral positions of the beam, a second line width λlat corresponding to lateral laser modes, and wherein the laser light of the beam has, when averaged over a whole cross section thereof, a line width λb corresponding to plural lateral laser modes, and wherein λm
摘要:
A beam delivery system of a projection exposure system comprises a laser generating a beam of laser light from a plurality of longitudinal laser modes in a cavity, wherein light generated by a single longitudinal laser mode has an average line width λlat, wherein the laser light of the beam has, at each of respective lateral positions of the beam, a second line width λlat corresponding to lateral laser modes, and wherein the laser light of the beam has, when averaged over a whole cross section thereof, a line width λb corresponding to plural lateral laser modes, and wherein λm
摘要:
An illumination system for a microlithographic projection exposure step-and-scan apparatus has a light source, a first optical raster element and a second optical raster element. The first optical raster element extends in a first pupil plane of the illumination system and is designed such that the geometrical optical flux of the system is increased perpendicular to a scan direction of the projection exposure apparatus. The second optical raster element extends in a second pupil plane of the illumination system, which is not necessarily different from the first pupil plane, and is designed such that the geometrical optical flux of the system is increased in the scan direction and perpendicular thereto. This makes it possible to improve the irradiance uniformity in a reticle plane.
摘要:
An illumination system for a microlithographic projection exposure step-and-scan apparatus has a light source, a first optical raster element and a second optical raster element. The first optical raster element extends in a first pupil plane of the illumination system and is designed such that the geometrical optical flux of the system is increased perpendicular to a scan direction of the projection exposure apparatus. The second optical raster element extends in a second pupil plane of the illumination system, which is not necessarily different from the first pupil plane, and is designed such that the geometrical optical flux of the system is increased in the scan direction and perpendicular thereto. This makes it possible to improve the irradiance uniformity in a reticle plane.
摘要:
An illumination system for a microlithographic projection exposure step-and-scan apparatus has a light source, a first optical raster element and a second optical raster element. The first optical raster element extends in a first pupil plane of the illumination system and is designed such that the geometrical optical flux of the system is increased perpendicular to a scan direction of the projection exposure apparatus. The second optical raster element extends in a second pupil plane of the illumination system, which is not necessarily different from the first pupil plane, and is designed such that the geometrical optical flux of the system is increased in the scan direction and perpendicular thereto. This makes it possible to improve the irradiance uniformity in a reticle plane.
摘要:
An illumination system of a microlithographic projection exposure apparatus has a pupil surface and an essentially flat arrangement of desirably individually drivable beam deviating elements for variable illumination of the pupil surface. Each beam deviating element allows deviation of a projection light beam incident on it to be achieved as a function of a control signal applied to the beam deviating element. A measurement illumination instrument directs a measurement light beam, independent of the projection light beams, onto a beam deviating element. A detector instrument records the measurement light beam after deviation by the beam deviating element. An evaluation unit determines the deviation of the projection light beam from measurement signals provided by the detector instrument.
摘要:
The invention relates to a filter device for an illumination system, especially for the correction of the illumination of the illuminating pupil, including a light source, with the illumination system being passed through by a bundle of illuminating rays from the light source to an object plane, with the bundle of illuminating rays impinging upon the filter device, including at least one filter element which can be introduced into the beam path of the bundle of illuminating rays, with the filter element including an actuating device, so that the filter element can be brought with the help of the actuating device into the bundle of illuminating rays.
摘要:
The disclosure relates to an illumination system of a microlithographic projection exposure apparatus. The illumination system can include a depolariser which in conjunction with a light mixing system disposed downstream in the light propagation direction at least partially causes effective depolarisation of polarised light impinging on the depolariser. The illumination system can also include a microlens array which is arranged upstream of the light mixing system in the light propagation direction. The microlens array can include a plurality of microlenses arranged with a periodicity. The depolariser can be configured so that a contribution afforded by interaction of the depolariser with the periodicity of the microlens array to a residual polarisation distribution occurring in a pupil plane arranged downstream of the microlens array in the light propagation direction has a maximum degree of polarisation of not more than 5%.
摘要:
The invention relates to a system for reducing the coherence of a wave front-emitting laser radiation, especially for a projection lens for use in semiconductor lithography, wherein a first partial beam of a laser beam incident on a surface of a resonator body is partially reflected. A second partial beam penetrates the resonator body and emerges from the resonator body at least approximately in the area of entry after a plurality of total internal reflections. The two partial beams are then Passed on jointly to an illumination plane. The resonator body is adapted, in addition to splitting the laser beam into partial beams, to modulate the wave fronts of at least one partial beam during a laser pulse. The partial beams reflected on the resonator body and penetrating the resonator body are superimposed downstream of the resonator body. The resonator body is provided with a phase plate having different local phase distribution.