摘要:
A microneedle mold and a method of manufacturing a microneedle mold are provided for use in fabricating microneedles. The method includes providing a microneedle mold base with recesses therein, the recesses corresponding to the microneedles to be fabricated and extending from a first surface of the microneedle mold base; and forming side-port forming holes in the microneedle mold base, the side-port forming holes extend in side surfaces of the recesses within the microneedle mold base at side-port forming positions of the recesses.
摘要:
Side-ported microneedles are produced from a suitably shaped microneedle mould (40). A microneedle mould base (32) is made with a number of microneedle mould recesses (30) in it. One surface of the microneedle mould base (32) is coated with a seed layer (34). The microneedle mould base (32) contains two microneedle mould sheets (24, 26), which are separated to gain access to an internal surface of one of the microneedle mould sheets (24, 26). Side-port forming channels (38) are formed on one of the internal surfaces, intersecting with the recesses (30) within the relevant microneedle mould sheet (24). The two microneedle mould sheets (24, 26) are placed back together and joined together as a unitary microneedle mould (40). The microneedles are formed in the recesses (30) by depositing a microneedle layer (44) therein and on the surface with the seed layer (34). The microneedle layer (44) fails to deposit at side-port forming holes (42) where the side-port forming channels (38) intersect the recesses (30), which result in side-ports (46) in the moulded microneedles (52).
摘要:
A master mould is made by wire cutting a plate in two or more directions to provide a base with an array of master mould needles protruding therefrom. The size and shape of the master mould needles can readily be varied by varying the angles of upward and downward cuts in the two or more directions. The master mould is used to make a secondary mould by hot embossing a secondary mould plate onto the master mould. This forms through-holes in the secondary mould. The secondary mould is plated with a layer of metal, which forms a microneedle array.
摘要:
The present invention provides a surgically invasive pointed article for skin penetration and capillary whole blood extraction whose penetration ability can be disabled after use by deforming the tips. The present invention is made by injection molding a plastic needle 35 having an anchoring means 45 using a first material, followed by another injection molding process to over-mold a first body segment 20 and second body segment 30 using a second material to encase the plastic needle 35 thereby anchoring the plastic needle 35 to prevent further movement of the plastic needle 35. The encasing of the second material provide a barrier isolating the plastic needle 35 from the ambient to protect the tips 50 from damage and once sterilized, to conserve the sterile conditions till point of use. The barrier formed by a second over-molding process comprises a detachable cap 20 and a body 30. The present invention is normally used for blood sampling applications but can also be used for applications such as vaccination or skin allergy testing, and transdermal/intradermal drug delivery.
摘要:
A surgically invasive pointed article for skin penetration and its fabrication method are presented. The present invention comprises a protruding sharp end portion and a body portion, the protruding sharp end portion comprising at least one penetration tip that can be disabled after use. The tip disablement after use is an effective safety measure in eradicating accidental injuries and re-use. The tip disablement can be carried out manually by the user or automatically if the article is used with a custom-made tip-disabling applicator. The skin penetration device can be used as a lancet for blood sampling, a needle for immunization and skin allergy testing, or a skin breaching device for transdermal drug delivery. The second aspect of the invention is a method for preparing the surgically invasive pointed article for skin penetration. The preparation method includes injection mould the articles into at least two body segments, the first body segment comprising at least one protruding end for skin penetration, and the second body segment being hollow forming a handle for handling purpose or an adaptor for fitting into an applicator. The third aspect of the invention is an over-moulding process for packaging purposes, wherein the articles moulded with a first material mentioned above are over-moulded with a second softer and cheaper material to form various additional functional parts.
摘要:
The present invention provides a surgically invasive pointed article for skin penetration and capillary whole blood extraction whose penetration ability can be disabled after use by deforming the tips. The present invention is made by injection moulding a plastic needle 35 having an anchoring means 45 using a first material, followed by another injection moulding process to over-mould a first body segment 20 and second body segment 30 using a second material to encase the plastic needle 35 thereby anchoring the plastic needle 35 to prevent further movement of the plastic needle 35. The encasing of the second material provide a barrier isolating the plastic needle 35 from the ambient to protect the tips 50 from damage and once sterilized, to conserve the sterile conditions till point of use. The barrier formed by a second over-moulding process comprises a detachable cap 20 and a body 30. The present invention is normally used for blood sampling applications but can also be used for applications such as vaccination or skin allergy testing, and transdermal/intradermal drug delivery.
摘要:
A portable electrophoretic contactless conductivity detection (C4D) system for analysis on a microfluidic chip houses in one embodiment a fluidic compartment for receiving the microfluidic chip, and four detection electrodes: first and second emitting electrodes, and first and second receiving electrodes. The first emitting electrode and the first receiving electrode are adjacent to a first channel wall of the microfluidic chip, and the second emitting electrode and the second receiving electrode are adjacent to a second channel wall, where the second channel wall is opposite to the first channel wall. In an embodiment, the electrodes are provided as portions of a removable cartridge cell.
摘要:
The contactless conductivity detector in one embodiment includes a microfluidic chip having a channel (102) thereon and four detection electrodes: first and second emitting electrodes (100a, 101a), and first and second receiving electrodes (100b, 101b). The channel (102) is defined by channel walls. The first emitting electrode (100a) and the first receiving electrode (100b) are adjacent a first channel wall, and the second emitting electrode (101a) and the second receiving electrode (101b) are adjacent a second channel wall, the second channel wall being opposite the first channel wall.
摘要:
A plastic microneedle comprising: a body portion tapering from a larger end of the body portion towards a tip portion of the body portion; at least one side port; and a lumen extending from the larger end of the body portion and within the body portion of the microneedle, wherein the side port extends into the lumen such that the side port and the lumen are in fluid communication with each other.
摘要:
In the preferred embodiment, a method of making microneedles comprises i) providing a microneedle template (300) having a plurality of microneedles cavities (360) on one surface, ii) preparing a casting solution (320) comprising at least one matrix material and its solvent, iii) subjecting said microneedle template (300) to a vacuum pressure for a length of time to deprive it of air, iv) dispensing the casting solution (320) over the air-deprived microneedle template, v) allowing the casting solution (320) to be drawn into the air-deprived microneedle cavities (360) completely, and vi) allowing the dissolving microneedles to solidify or dry in a controlled environment.