摘要:
Provided is a transparent transistor including a substrate, source and drain electrodes formed on the substrate, each having a multi-layered structure of a lower transparent layer, a metal layer and an upper transparent layer, a channel formed between the source and drain electrodes, and a gate electrode aligned with the channel. Here, the lower transparent layer or the upper transparent layer is formed of a transparent semiconductor layer, which is the same as the channel. Thus, the use of the multi-layered transparent conductive layer can ensure transparency and conductivity, overcome a problem of contact resistance between the source and drain electrodes and a semiconductor, and improve processibility by patterning the multi-layered transparent conductive layer all at once, while deposition is performed layer by layer.
摘要:
A method of manufacturing a transparent transistor including a substrate, source and drain electrodes formed on the substrate, each having a multi-layered structure of a lower transparent layer, a metal layer and an upper transparent layer, a channel formed between the source and drain electrodes, and a gate electrode aligned with the channel. The lower transparent layer or the upper transparent layer is formed of a transparent semiconductor layer, which is the same as the channel.
摘要:
Provided are a composition for an oxide semiconductor thin film, a field effect transistor using the same and a method of fabricating the field effect transistor. The composition includes an aluminum oxide, a zinc oxide, an indium oxide and a tin oxide. The thin film formed of the composition is in amorphous phase. The field effect transistor having an active layer formed of the composition can have an improved electrical characteristic and be fabricated by a low temperature process.
摘要:
A method of manufacturing a transparent transistor including a substrate, source and drain electrodes formed on the substrate, each having a multi-layered structure of a lower transparent layer, a metal layer and an upper transparent layer, a channel formed between the source and drain electrodes, and a gate electrode aligned with the channel. The lower transparent layer or the upper transparent layer is formed of a transparent semiconductor layer, which is the same as the channel.
摘要:
Provided is a transparent transistor including a substrate, source and drain electrodes formed on the substrate, each having a multi-layered structure of a lower transparent layer, a metal layer and an upper transparent layer, a channel formed between the source and drain electrodes, and a gate electrode aligned with the channel. Here, the lower transparent layer or the upper transparent layer is formed of a transparent semiconductor layer, which is the same as the channel. Thus, the use of the multi-layered transparent conductive layer can ensure transparency and conductivity, overcome a problem of contact resistance between the source and drain electrodes and a semiconductor, and improve processibility by patterning the multi-layered transparent conductive layer all at once, while deposition is performed layer by layer.
摘要:
A composition for an oxide semiconductor thin film, a field effect transistor (FET) using the composition, and a method of fabricating the FET are provided. The composition includes an aluminum oxide, a zinc oxide, and a tin oxide. The thin film formed of the composition remains in amorphous phase at a temperature of 400° C or less. The FET using an active layer formed of the composition has improved electrical characteristics and can be fabricated using a low-temperature process without expensive raw materials, such as In and Ga.
摘要:
Provided is a composition for an oxide semiconductor thin film and a field effect transistor (FET) using the composition. The composition includes from about 50 to about 99 mol % of a zinc oxide (ZnO); from about 0.5 to 49.5 mol % of a tin oxide (SnOx); and remaining molar percentage of an aluminum oxide (AlOx). The thin film formed of the composition remains in amorphous phase at a temperature of 400° C. or less. The FET includes an active layer formed of the composition and has improved electrical characteristics. The FET can be fabricated using a low-temperature process without expensive raw materials, such as In and Ga.
摘要:
Provided are a method and apparatus for modeling source-drain current of a TFT. The method includes receiving sample data, the sample data including a sample input value and a sample output value; adjusting modeling variables according to the sample data; calculating a current model value according to the adjusted modeling variables; when a difference between the calculated current model value and the sample output value is smaller than a predetermined threshold value, fitting a current model by applying the adjusted modeling variables to the current model; applying actual input data to the fitted current model; and outputting a result value corresponding to the actual input data, wherein the current model is a model for predicting the source-drain current of the TFT.
摘要:
Provided is a method of fabricating a thin film transistor including source and drain electrodes, a novel channel layer, a gate insulating layer, and a gate electrode, which are formed on a substrate. The method includes the steps of forming the channel layer using an oxide semiconductor doped with boron; and patterning the channel layer. The channel layer formed is an oxide semiconductor thin film doped with boron. The electrical characteristics and high temperature stability of the thin film transistor are improved remarkably.
摘要:
Provided are a method and apparatus for modeling source-drain current of a TFT. The method includes receiving sample data, the sample data including a sample input value and a sample output value; adjusting modeling variables according to the sample data; calculating a current model value according to the adjusted modeling variables; when a difference between the calculated current model value and the sample output value is smaller than a predetermined threshold value, fitting a current model by applying the adjusted modeling variables to the current model; applying actual input data to the fitted current model; and outputting a result value corresponding to the actual input data, wherein the current model is a model for predicting the source-drain current of the TFT.