摘要:
A transistor device with strained Ge layer by selectively growth and a fabricating method thereof are provided. A strained Ge layer is selectively grown on a substrate, so that the material of source/drain region is still the same as that of the substrate, and the strained Ge layer serves as a carry transport channel. Therefore, the performance of the device characteristics can be improved and the leakage current of the transistor may be approximately commensurate with that of a Si substrate field effect transistor (FET).
摘要:
Fabrication methods for compressive strained-silicon by ion implantation. Ions are implanted into a silicon-containing substrate and high temperature processing converts the vicinity of the ion-contained region into strained-silicon. Transistors fabricated by the method are also provided.
摘要:
A strained germanium field effect transistor (FET) and method of making the same, comprise forming a germanium layer on a substrate, then forming a Si protective layer on the germanium layer, next forming a gate insulation layer on the Si protective layer, and fmally positioning a gate on the gate insulation layer. The germanium layer is used as a carrier transport channel of the strained germanium FET to improve the drive current and the carrier mobility, and to increase the devices performance effectively. And because the Si protective layer is on the germanium layer, the interface property between the germanium layer and the gate insulation layer is improved.
摘要:
Fabrication methods for compressive strained-silicon by ion implantation. Ions are implanted into a silicon-containing substrate and high temperature processing converts the vicinity of the ion-contained region into strained-silicon. Transistors fabricated by the method are also provided.
摘要:
Fabrication methods for compressive strained-silicon by ion implantation. Ions are implanted into a silicon-containing substrate and high temperature processing converts the vicinity of the ion-contained region into strained-silicon. Transistors fabricated by the method are also provided.
摘要:
A thin-film solar cell having a hetero-junction of semiconductor and the fabrication method thereof are provided. Instead of the conventional hetero-junction of III-V semiconductor or homo-structure of IV semiconductor, the thin-film solar cell according to the present invention adopts a novel hetero-junction structure of IV semiconductor to improve the cell efficiency thereof. By adjusting the amount of layer sequences and the thickness of the hetero-junction structure, the cell efficiency of the thin-film solar cell according to the present invention is also optimized.
摘要:
A reflector structure is provided for improving irradiation uniformity of a linear lamp array applied in a semiconductor process. The reflector structure includes a central reflector, two side reflectors, and two inclined reflectors. The central reflector is horizontally set above the linear lamp array at a first predetermined distance from a wafer for reflecting light irradiated from a central part of the linear lamp array to the wafer. The two side reflectors are horizontally set above the linear lamp at a second predetermined distance to the wafer, wherein the second predetermined distance is less than the first predetermined distance, and respectively connected to two opposite side parts of the central reflector for reflecting light irradiated from side parts of the linear lamp array to the wafer. The two inclined reflectors are respectively connected to one side of each of the two first side reflectors at an inclined angel to the wafer for reflecting light irradiated from two end parts of the linear lamp array to the wafer.
摘要:
A MOSFET structure utilizing strained silicon carbon alloy and fabrication method thereof. The MOSFET structure includes a substrate, a graded SiGe layer, a relaxed buffer layer, a strained silicon carbon alloy channel layer, a gate dielectric layer, a polysilicon gate electrode (or metal gate electrode) and a source/drain region.
摘要:
A MOSFET structure utilizing strained silicon carbon alloy and fabrication method thereof. The MOSFET structure includes a substrate, a graded SiGe layer, a relaxed buffer layer, a strained silicon carbon alloy channel layer, a gate dielectric layer, a polysilicon gate electrode (or metal gate electrode) and a source/drain region.
摘要:
A method for characterizing the quality of the interface between a silicon and a gate insulator in a MOS device includes the steps of: applying at least one current to the MOS device through the gate; detecting at least one electroluminescent signal corresponding to the silicon bandgap energy after the current flows through the MOS device; and outputting the electroluminescent waveform in the time domain. The quality of the interface between a silicon and a gate insulator in the MOS device is determined by analyzing the minority carrier lifetime in silicon. The invention also discloses a characterization system for implementing the method.