METHOD FOR FORMING A VERTICAL MOS TRANSISTOR
    2.
    发明申请
    METHOD FOR FORMING A VERTICAL MOS TRANSISTOR 有权
    形成垂直MOS晶体管的方法

    公开(公告)号:US20110275187A1

    公开(公告)日:2011-11-10

    申请号:US12777066

    申请日:2010-05-10

    IPC分类号: H01L21/336

    摘要: A method is used to form a vertical MOS transistor. The method utilizes a semiconductor layer. An opening is etched in the semiconductor layer. A gate dielectric is formed in the opening that has a vertical portion that extends to a top surface of the first semiconductor layer. A gate is formed in the opening having a major portion laterally adjacent to the vertical portion of the gate dielectric and an overhang portion that extends laterally over the vertical portion of the gate dielectric. An implant is performed to form a source region at the top surface of the semiconductor layer while the overhang portion is present.

    摘要翻译: 使用一种方法来形成垂直MOS晶体管。 该方法利用半导体层。 在半导体层中蚀刻开口。 栅极电介质形成在开口中,其具有延伸到第一半导体层的顶表面的垂直部分。 栅极形成在开口中,其主要部分横向邻近栅极电介质的垂直部分,并且悬垂部分横向延伸越过栅极电介质的垂直部分。 执行注入以在半导体层的顶表面处形成源极区域,同时存在突出部分。

    Method for forming a vertical MOS transistor
    3.
    发明授权
    Method for forming a vertical MOS transistor 有权
    用于形成垂直MOS晶体管的方法

    公开(公告)号:US08143126B2

    公开(公告)日:2012-03-27

    申请号:US12777066

    申请日:2010-05-10

    IPC分类号: H01L21/336

    摘要: A method is used to form a vertical MOS transistor. The method utilizes a semiconductor layer. An opening is etched in the semiconductor layer. A gate dielectric is formed in the opening that has a vertical portion that extends to a top surface of the first semiconductor layer. A gate is formed in the opening having a major portion laterally adjacent to the vertical portion of the gate dielectric and an overhang portion that extends laterally over the vertical portion of the gate dielectric. An implant is performed to form a source region at the top surface of the semiconductor layer while the overhang portion is present.

    摘要翻译: 使用一种方法来形成垂直MOS晶体管。 该方法利用半导体层。 在半导体层中蚀刻开口。 栅极电介质形成在开口中,其具有延伸到第一半导体层的顶表面的垂直部分。 栅极形成在开口中,其主要部分横向邻近栅极电介质的垂直部分,并且悬垂部分横向延伸越过栅极电介质的垂直部分。 执行注入以在半导体层的顶表面处形成源极区域,同时存在突出部分。

    Power MOSFET current sense structure and method
    4.
    发明授权
    Power MOSFET current sense structure and method 有权
    功率MOSFET电流检测结构和方法

    公开(公告)号:US09293535B2

    公开(公告)日:2016-03-22

    申请号:US13610901

    申请日:2012-09-12

    摘要: A power MOSFET has a main-FET (MFET) and an embedded current sensing-FET (SFET). MFET gate runners are coupled to SFET gate runners by isolation gate runners (IGRs) in a buffer space between the MFET and the SFET. In one embodiment, n IGRs (i=1 to n) couple n+1 gates of a first portion of the MFET (304) to n gates of the SFET. The IGRs have zigzagged central portions where each SFET gate runner is coupled via the IGRs to two MFET gate runners. The zigzagged central portions provide barriers that block parasitic leakage paths, between sources of the SFET and sources of the MFET, for all IGRs except the outboard sides of the first and last IGRs. These may be blocked by increasing the body doping in regions surrounding the remaining leakage paths. The IGRs have substantially no source regions.

    摘要翻译: 功率MOSFET具有主FET(MFET)和嵌入式电流感测FET(SFET)。 MFET栅极流道通过MFET和SFET之间的缓冲空间中的隔离栅极流道(IGR)耦合到SFET栅极流道。 在一个实施例中,n IGR(i = 1至n)将MFET(304)的第一部分的n + 1个栅极耦合到SFET的n个栅极。 IGR具有曲折的中心部分,其中每个SFET栅极流道经由IGR耦合到两个MFET栅极流道。 曲折的中心部分提供阻挡除了第一和最后一次IGR的外侧之外的所有IGR的SFET源和MFET源之间的寄生泄漏路径。 这些可能通过在围绕剩余泄漏路径的区域中增加体掺杂来阻止。 IGR基本上没有源区。

    POWER MOSFET CURRENT SENSE STRUCTURE AND METHOD
    5.
    发明申请
    POWER MOSFET CURRENT SENSE STRUCTURE AND METHOD 有权
    功率MOSFET电流检测结构与方法

    公开(公告)号:US20140070313A1

    公开(公告)日:2014-03-13

    申请号:US13610901

    申请日:2012-09-12

    IPC分类号: H01L29/78 H01L21/336

    摘要: A power MOSFET has a main-FET (MFET) and an embedded current sensing-FET (SFET). MFET gate runners are coupled to SFET gate runners by isolation gate runners (IGRs) in a buffer space between the MFET and the SFET. In one embodiment, n IGRs (i=1 to n) couple n+1 gates of a first portion of the MFET (304) to n gates of the SFET. The IGRs have zigzagged central portions where each SFET gate runner is coupled via the IGRs to two MFET gate runners. The zigzagged central portions provide barriers that block parasitic leakage paths, between sources of the SFET and sources of the MFET, for all IGRs except the outboard sides of the first and last IGRs. These may be blocked by increasing the body doping in regions surrounding the remaining leakage paths. The IGRs have substantially no source regions.

    摘要翻译: 功率MOSFET具有主FET(MFET)和嵌入式电流感测FET(SFET)。 MFET栅极流道通过MFET和SFET之间的缓冲空间中的隔离栅极流道(IGR)耦合到SFET栅极流道。 在一个实施例中,n IGR(i = 1至n)将MFET(304)的第一部分的n + 1个栅极耦合到SFET的n个栅极。 IGR具有曲折的中心部分,其中每个SFET栅极流道经由IGR耦合到两个MFET栅极流道。 曲折的中心部分提供阻挡除了第一和最后一次IGR的外侧之外的所有IGR的SFET源和MFET源之间的寄生泄漏路径。 这些可能通过在围绕剩余泄漏路径的区域中增加体掺杂来阻止。 IGRs基本上没有源区。

    HIGH VOLTAGE TMOS SEMICONDUCTOR DEVICE WITH LOW GATE CHARGE STRUCTURE AND METHOD OF MAKING
    6.
    发明申请
    HIGH VOLTAGE TMOS SEMICONDUCTOR DEVICE WITH LOW GATE CHARGE STRUCTURE AND METHOD OF MAKING 有权
    具有低栅极电荷结构的高压TMOS半导体器件及其制造方法

    公开(公告)号:US20090108339A1

    公开(公告)日:2009-04-30

    申请号:US11932070

    申请日:2007-10-31

    IPC分类号: H01L29/78 H01L21/336

    摘要: A TMOS device (10) is formed using a semiconductor layer (16) of a first type. First and second regions (62,64) of the second type are formed in the semiconductor layer and are spaced apart. A third region (68) is formed in the semiconductor layer by implanting. The third region is between and contacts the first and second doped regions, is of the second conductivity type, and is less heavily doped than the first and second doped regions. A gate stack (67) is formed over a portion of the first doped region, a portion of the second doped region, and the third doped region. By implanting after forming the gate stack, fourth and fifth regions (98,100) of the first type are formed in interior portions of the first and second doped regions, respectively. The third region being of the same conductivity type as the first and second regions reduces Miller capacitance.

    摘要翻译: 使用第一类型的半导体层(16)形成TMOS器件(10)。 第二类型的第一和第二区域(62,64)形成在半导体层中并且间隔开。 通过注入在半导体层中形成第三区域(68)。 第三区域在第一和第二掺杂区域之间并且与第一和第二掺杂区域接触,具有第二导电类型,并且比第一和第二掺杂区域重掺杂。 栅极堆叠(67)形成在第一掺杂区域的一部分,第二掺杂区域的一部分和第三掺杂区域上。 通过在形成栅叠层之后注入,第一类型的第四和第五区(98,100)分别形成在第一和第二掺杂区的内部。 与第一和第二区域具有相同导电类型的第三区域减小了米勒电容。

    Power MOSFET structure and method
    8.
    发明授权
    Power MOSFET structure and method 有权
    功率MOSFET结构及方法

    公开(公告)号:US08759909B2

    公开(公告)日:2014-06-24

    申请号:US13609281

    申请日:2012-09-11

    IPC分类号: H01L21/336

    摘要: A power MOSFET includes a semiconductor substrate with an upper surface, a cavity of a first depth in the substrate whose sidewall extends to the upper surface, a dielectric liner in the cavity, a gate conductor within the dielectric liner extending to or above the upper surface, body region(s) within the substrate of a second depth, separated from the gate conductor in a lower cavity region by first portion(s) of the dielectric liner of a first thickness, and source region(s) within the body region(s) extending to a third depth that is less than the second depth. The source region(s) are separated from the gate conductor by a second portion of the dielectric liner of a second thickness at least in part greater than the first thickness. The dielectric liner has a protrusion extending laterally into the gate conductor away from the body region(s) at or less than the third depth.

    摘要翻译: 功率MOSFET包括具有上表面的半导体衬底,衬底中的第一深度的腔,其侧壁延伸到上表面,空腔中的电介质衬垫,介电衬里内的延伸到上表面或上表面的栅极导体 在第二深度的衬底内的体区域,其在第一厚度的电介质衬垫的第一部分和主体区域中的源区域之间与下腔体区域中的栅极导体分开( s)延伸到小于第二深度的第三深度。 源极区域通过第二厚度的电介质衬垫的第二部分至少部分地大于第一厚度与栅极导体分离。 电介质衬垫具有在或小于第三深度的横向延伸到门导体远离身体区域的突起。

    Power MOSFET device having low on-resistance and method
    9.
    发明授权
    Power MOSFET device having low on-resistance and method 失效
    功率MOSFET器件具有低导通电阻和方法

    公开(公告)号:US6084268A

    公开(公告)日:2000-07-04

    申请号:US962725

    申请日:1997-11-03

    摘要: A power MOSFET device (40) includes one or more localized regions of doping (61,62,63) formed in a more lightly doped semiconductor layer (42). The one or more localized regions of doping (61,62,63) reduce inherent resistances between the source regions (47,48) and the drain region (41) of the device. The one or more localized regions of doping (61,62,63) are spaced apart from the body regions (44,46) to avoid detrimentally impacting device breakdown voltage. In an alternative embodiment, a groove (122) or trench (152) design is incorporated to reduce JFET resistance (34). In a further embodiment, a gate dielectric layer having a thick portion (77,97,128,158) and thin portions (76,126,156) is incorporated to enhance switching characteristics and/or breakdown voltage.

    摘要翻译: 功率MOSFET器件(40)包括在更轻掺杂的半导体层(42)中形成的一个或多个局部的掺杂区域(61,62,63)。 一个或多个局部的掺杂区域(61,62,63)降低了器件的源极区域(47,48)和漏极区域(41)之间的固有电阻。 一个或多个局部的掺杂区域(61,62,63)与主体区域(44,46)间隔开,以避免不利地影响器件击穿电压。 在替代实施例中,结合凹槽(122)或沟槽(152)设计以减少JFET电阻(34)。 在另一实施例中,并入具有厚部分(77,97,128,158)和薄部分(76,126,156)的栅介质层,以增强开关特性和/或击穿电压。

    Method of forming a non-selective silicon-germanium epitaxial film
    10.
    发明授权
    Method of forming a non-selective silicon-germanium epitaxial film 失效
    形成非选择性硅 - 锗外延膜的方法

    公开(公告)号:US5273930A

    公开(公告)日:1993-12-28

    申请号:US940402

    申请日:1992-09-03

    摘要: A method of forming a silicon-germanium epitaxial layer using dichlorosilane as a silicon source gas. A semiconductor seed layer (15) is formed on a portion of a semiconductor layer (12) and on a portion of a layer of dielectric material (13). The semiconductor seed layer (15) provides nucleation sites for a Si-Ge epitaxial alloy layer (16). The epitaxial film (16) is formed on the semiconductor seed layer (15). Both the semiconductor seed layer (15) and the Si-Ge epitaxial film (16) are formed at a system growth pressure between approximately 25 and 760 millimeters of mercury and a temperature below approximately 900.degree. C. The semiconductor seed layer (15) and the Si-Ge epitaxial film (16) permit fabrication of a heterostructure semiconductor integrated circuit (10), thereby allowing the exploitation of band-gap engineering techniques.

    摘要翻译: 使用二氯硅烷作为硅源气体形成硅 - 锗外延层的方法。 在半导体层(12)的一部分和电介质材料层(13)的一部分上形成半导体种子层(15)。 半导体晶种层(15)为Si-Ge外延合金层(16)提供成核位置。 外延膜(16)形成在半导体种子层(15)上。 半导体种子层(15)和Si-Ge外延膜(16)都以约25和760毫米汞柱之间的系统生长压力和低于约900℃的温度形成。半导体种子层(15)和 Si-Ge外延膜(16)允许制造异质结构半导体集成电路(10),从而允许利用带隙工程技术。