摘要:
There are provided: a semiconductor substrate including first and second device regions isolated by device isolation regions; a first gate insulating film of a high-k material formed in the first device region; a first gate electrode formed on the first gate insulating film; first source and drain regions formed at both sides of the first gate electrode in the first device region; a second gate insulating film of a high-k material which is different from the high-k material of the first gate insulating film, the second gate insulating film being formed in the second device region; a second gate electrode formed on the second gate insulating film; and second source and drain regions formed at both sides of the second gate electrode in the second device region.
摘要:
The present invention provides a method of manufacturing a semiconductor device, comprising forming an electrode pattern made of silicon on a gate insulating film in an n-MOS region and a p-MOS region of a semiconductor substrate, masking the n-MOS region including the first electrode pattern with a first insulating film pattern, forming a first metal film made of platinum all over the surface, forming a gate electrode consisting of a platinum silicide in the p-MOS region, forming an silicon oxide film on the surface of the gate electrode by oxidation, dissolving away a non-reacting Pt film, removing the first insulating film pattern, masking the p-MOS region including the electrode pattern with a second insulating film pattern, forming a second metal film made of europium all over the surface, and forming a gate electrode consisting of a europium silicide in the n-MOS region.
摘要:
The present invention provides a method of manufacturing a semiconductor device, comprising forming an electrode pattern made of silicon on a gate insulating film in an n-MOS region and a p-MOS region of a semiconductor substrate, masking the n-MOS region including the first electrode pattern with a first insulating film pattern, forming a first metal film made of platinum all over the surface, forming a gate electrode consisting of a platinum silicide in the p-MOS region, forming an silicon oxide film on the surface of the gate electrode by oxidation, dissolving away a non-reacting Pt film, removing the first insulating film pattern, masking the p-MOS region including the electrode pattern with a second insulating film pattern, forming a second metal film made of europium all over the surface, and forming a gate electrode consisting of a europium silicide in the n-MOS region.
摘要:
A method of manufacturing a semiconductor device, includes the steps of forming a disposable gate on a semiconductor substrate in a region where a gate electrode is to be formed, forming a sidewall spacer on a sidewall of the disposable gate, forming a source and drain in the semiconductor substrate using the disposable gate and the sidewall spacer as a mask, forming an interlevel insulating film on the semiconductor substrate so as to cover the disposable gate, planarizing an upper surface of the interlevel insulating film to expose upper surfaces of the disposable gate and the sidewall spacer, removing the disposable gate to form a trench portion having a side surface formed from the sidewall spacer and a bottom surface formed from the semiconductor substrate, depositing a gate insulating film on the semiconductor substrate so as to cover the bottom surface and side surface of the trench portion, forming a gate electrode buried in the trench portion, and removing the sidewall spacer and the gate insulating film on the sidewall of the gate electrode.
摘要:
A method of manufacturing a semiconductor device, includes the steps of forming a disposable gate on a semiconductor substrate in a region where a gate electrode is to be formed, forming a sidewall spacer on a sidewall of the disposable gate, forming a source and drain in the semiconductor substrate using the disposable gate and the sidewall spacer as a mask, forming an interlevel insulating film on the semiconductor substrate so as to cover the disposable gate, planarizing an upper surface of the interlevel insulating film to expose upper surfaces of the disposable gate and the sidewall spacer, removing the disposable gate to form a trench portion having a side surface formed from the sidewall spacer and a bottom surface formed from the semiconductor substrate, depositing a gate insulating film on the semiconductor substrate so as to cover the bottom surface and side surface of the trench portion, forming a gate electrode buried in the trench portion, and removing the sidewall spacer and the gate insulating film on the sidewall of the gate electrode.
摘要:
A method of manufacturing semiconductor device comprises the steps of forming a first film and a second film on a semiconductor substrate, selectively removing the second film, the first film and a top portion of the semiconductor substrate to form a first groove, burying a first insulator film in the first groove to form an isolation region, patterning the second film surrounded by the isolation region to form a dummy gate layer, doping the semiconductor substrate with an impurity using the dummy gate layer as a mask, forming a second insulator film on the semiconductor substrate surrounded by the dummy gate layer and the first insulator film, removing the dummy gate layer and the first film to form a second groove, forming a gate insulator film on the semiconductor substrate in the second groove, and forming a gate electrode on the gate insulator film in the second groove.
摘要:
A semiconductor device includes an underlying layer formed by a first insulation layer, a plurality of island semiconductor layers formed on the first insulation layer, source and drain regions formed in each of the island semiconductor layers, a first gate electrode formed between the source and drain regions and formed on and insulated from the island semiconductor layer, a second insulation layer formed on the sides of the island semiconductor layer and along the periphery of the first gate electrode, the second insulation layer being higher than the surface of the island semiconductor layer and lower than the surface of the first gate electrode, and a second gate electrode formed over both the first gate electrode and the second insulation layer.
摘要:
Dummy gate patterns 111, 112 are formed on a silicon active layer 103 of an SOI substrate, and thereafter, these dummy gate patterns 111, 112 are removed to form gate grooves 130, 132. A threshold voltage of each transistor is adjusted by etching a silicon active layer 103 in any one of these gate grooves 130, 132 to reduce a thickness of a portion constituting a channel region. This enables the enhancement of freedom degree and so on in circuit designing according to conditions.
摘要:
In a semiconductor device in which the gate electrode of a MISFET formed on a semiconductor substrate is electrically connected to a well region under the channel of the MISFET, the MISFET is formed in an island-shaped element region formed on the semiconductor substrate, and electrical connection between the gate electrode of the MISFET and the well region in the semiconductor substrate is done on the side surface of the island-shaped element region.
摘要:
This disclosure concerns a manufacturing method of a semiconductor device includes forming a Fin-type body on an insulation layer, the Fin-type body being made of a semiconductor material and having an upper surface covered with a protective film; forming a gate insulation film on side surfaces of the Fin-type body; depositing a gate electrode material so as to cover the Fin-type body; planarizing the gate electrode material; forming a gate electrode by processing the gate electrode material; depositing an interlayer insulation film so as to cover the gate electrode; exposing the upper surface of the gate electrode; depositing a metal layer on the upper surface of the gate electrode; siliciding the gate electrode by reacting the gate electrode with the metal layer; forming a trench on the upper surface of the protective film by removing an unreacted metal in the metal layer; and filling the trench with a conductor.