摘要:
According to one embodiment, gate electrodes of a multi-gate field effect transistors and methods of making a gate electrode of a multi-gate field effect transistor are provided. The gate electrode can contain a semiconductor substrate; a dielectric layer over the semiconductor substrate; a fin over the dielectric layer; a gate insulating layer over the side surfaces of the fin; a gate electrode layer over the fin; and a polysilicon layer over the fin. The gate electrode does not contain a gate insulating layer over the upper surface of the dielectric layer except portions of the upper surface of the dielectric layer that contact with the side surfaces of the gate insulating layer formed over the side surface of the fin. In another embodiment, the gate electrode can contain an oxygen diffusion barrier layer or a first oxygen diffusion layer over the upper surface of the dielectric layer.
摘要:
The disclosure concerns a method of manufacturing a semiconductor device including forming a plurality of fins made of a semiconductor material on an insulating layer; forming a gate insulating film on side surfaces of the plurality of fins; and forming a gate electrode on the gate insulating film in such a manner that a compressive stress is applied to a side surface of a first fin which is used in an NMOSFET among the plurality of fins in a direction perpendicular to the side surface and a tensile stress is applied to a side surface of a second fin which is used in a PMOSFET among the plurality of fins in a direction perpendicular to the side surface.
摘要:
According to the present invention, there is provided a semiconductor device fabrication method, comprising:depositing a mask material on a semiconductor substrate;patterning the mask material and forming a trench in a surface portion of the semiconductor substrate by etching, thereby forming a first projection in a first region, and a second projection wider than the first projection in a second region;burying a device isolation insulating film in the trench;etching away a predetermined amount of the device isolation insulating film formed in the first region;etching away the mask material formed in the second region;forming a first gate insulating film on a pair of opposing side surfaces of the first projection, and a second gate insulating film on an upper surface of the second projection;depositing a first gate electrode material on the device isolation insulating film, mask material, and second gate insulating film;planarizing the first gate electrode material by using as stoppers the mask material formed in the first region and the device isolation insulating film formed in the second region;depositing a second gate electrode material on the mask material, first gate electrode material, and device isolation insulating film; andpatterning the first and second gate electrode materials, thereby forming a first gate electrode in the first region, and a second gate electrode in the second region.
摘要:
A method of manufacturing a semiconductor device includes forming a plurality of Fins including a semiconductor material on an insulation layer; forming gate insulation films on sidewalls of the Fins; forming a gate electrode which extends in a direction of arrangement of the Fins and which is electrically insulated from the Fins, the gate electrode is common in the Fins on the gate insulation film; implanting an impurity into portions of the Fins by using the gate electrode as a mask to form a source-drain diffusion layer, the portions of the Fins extending on both sides of the gate electrodes; and depositing a conductive material on both sides of the Fins to connect the Fins to each other.
摘要:
A semiconductor device comprises a support layer made of semiconductor, a diffusion layer formed by implanting impurities in a surface layer of the support layer, a buried insulating layer provided on the diffusion layer, an island-like active layer provided on the buried insulating layer, a channel region formed in the active layer, source and drain regions formed in the active layer, sandwiching the channel region, a gate insulating film formed on the channel region, a gate electrode formed on the gate insulating film and on side surfaces of the island-like active layer, and insulated and isolated from the channel, source, and drain regions, and an electrode connected to the active layer.
摘要:
The present invention provides a method of manufacturing a semiconductor device, comprising forming an electrode pattern made of silicon on a gate insulating film in an n-MOS region and a p-MOS region of a semiconductor substrate, masking the n-MOS region including the first electrode pattern with a first insulating film pattern, forming a first metal film made of platinum all over the surface, forming a gate electrode consisting of a platinum silicide in the p-MOS region, forming an silicon oxide film on the surface of the gate electrode by oxidation, dissolving away a non-reacting Pt film, removing the first insulating film pattern, masking the p-MOS region including the electrode pattern with a second insulating film pattern, forming a second metal film made of europium all over the surface, and forming a gate electrode consisting of a europium silicide in the n-MOS region.
摘要:
A semiconductor device in which an NMOSFET and a PMOSFET are formed in a silicon substrate, wherein the gate electrodes of NMOSFET and PMOSFET are made of metallic materials, an Si—Ge layer is formed in at least part of the surface regions including the respective channel layers of the NMOSFET and PMOSFET, and the concentration of Ge in the channel layer of the NMOSFET is lower than the concentration of Ge in the channel layer of the PMOSFET.
摘要:
A method of manufacturing semiconductor device comprises the steps of forming a first film and a second film on a semiconductor substrate, selectively removing the second film, the first film and a top portion of the semiconductor substrate to form a first groove, burying a first insulator film in the first groove to form an isolation region, patterning the second film surrounded by the isolation region to form a dummy gate layer, doping the semiconductor substrate with an impurity using the dummy gate layer as a mask, forming a second insulator film on the semiconductor substrate surrounded by the dummy gate layer and the first insulator film, removing the dummy gate layer and the first film to form a second groove, forming a gate insulator film on the semiconductor substrate in the second groove, and forming a gate electrode on the gate insulator film in the second groove.
摘要:
A semiconductor device includes an underlying layer formed by a first insulation layer, a plurality of island semiconductor layers formed on the first insulation layer, source and drain regions formed in each of the island semiconductor layers, a first gate electrode formed between the source and drain regions and formed on and insulated from the island semiconductor layer, a second insulation layer formed on the sides of the island semiconductor layer and along the periphery of the first gate electrode, the second insulation layer being higher than the surface of the island semiconductor layer and lower than the surface of the first gate electrode, and a second gate electrode formed over both the first gate electrode and the second insulation layer.
摘要:
Disclosed is a semiconductor device, comprising a substrate having a first region and a second region surrounding the first region, a MOS transistor formed in the first region, a first conductive layer formed in the first region and constituting the lower layer of a two-layered gate electrode of the MOS transistor, a second conductive layer for isolation, the second conductive layer being formed in the second region and having an upper surface whose level is lower than that of the upper surface of the first conductive layer, a first insulating layer formed between the first and second regions, a second insulating layer formed on the second conductive layer, and a third conductive layer formed over the first conductive layer and the second insulating layer and constituting the upper layer of the two-layered gate electrode of the MOS transistor.