Abstract:
A reverse-conducting insulated gate bipolar transistor, particularly a bi-mode insulated gate transistor, is controlled by responding to an ON command by applying high-level gate voltage for a first period, during which a current is fed into a connection point, from which it flows either through the RC-IGBT or along a different path. Based hereon, it is determined whether the RC-IGBT conducts in its forward/IGBT or reverse/diode mode, and the RC-IGBT is either driven at high or low gate voltage. Subsequent conduction mode changes may be monitored in the same way, and the gate voltage may be adjusted accordingly. A special turn-off procedure may be applied in response to an OFF command in cases where the RC-IGBT conducts in the reverse mode, wherein a high-level pulse is applied for a second period before the gate voltage goes down to turn-off level.
Abstract:
A power semiconductor device includes a four-layer structure having layers arranged in order: (i) a cathode layer of a first conductivity type with a central area being surrounded by a lateral edge, the cathode layer being in direct electrical contact with a cathode electrode, (ii) a base layer of a second conductivity type, (iii) a drift layer of the first conductivity typehaving a lower doping concentration than the cathode layer, and (iv) an anode layer of the second conductivity type which is in electrical contact with an anode electrode. The base layer includes a first layer as a continuous layer contacting the central area of the cathode layer. A resistance reduction layer, in which the resistance at the junction between the lateral edge of the cathode and base layers is reduced, is arranged between the first layer and the cathode layer and covers the lateral edge of the cathode layer.
Abstract:
A method for producing a semiconductor device such as a RC-IGBT or a BIGT having a patterned surface wherein partial regions doped with dopants of a first conductivity type and regions doped with dopants of a second conductivity type are on a same side of a semiconductor substrate is proposed. An exemplary method includes: (a) implanting dopants of the first conductivity type and implanting dopants of the second conductivity type into the surface to be patterned; (b) locally activating dopants of the first conductivity type by locally heating the partial region of the surface to be patterned to a first temperature (e.g., between 900 and 1000° C.) using a laser beam similar to those used in laser annealing; and (c) activating the dopants of the second conductivity type by heating the substrate to a second temperature lower than the first temperature (e.g., to a temperature below 600° C.). Boron is an exemplary dopant of the first conductivity type, and phosphorous is an exemplary dopant of the second conductivity type. Boron can be activated in the regions irradiated only with the laser beam, whereas phosphorus may be activated in a low temperature sintering step on the entire surface.
Abstract:
An exemplary method is disclosed for manufacturing a power semiconductor device which has a first electrical contact on a first main side and a second electrical contact on a second main side opposite the first main side and at least a two-layer structure with layers of different conductivity types, and includes providing an n-doped wafer and creating a surface layer of palladium particles on the first main side. The wafer is irradiated on the first main side with ions. Afterwards, the palladium particles are diffused into the wafer at a temperature of not more than 750° C., by which diffusion a first p-doped layer is created. Then, the first and second electrical contacts are created. At least the irradiation with ions is performed through a mask.
Abstract:
A reverse-conducting semiconductor device includes a freewheeling diode and an insulated gate bipolar transistor (IGBT) on a common wafer. Part of the wafer forms a base layer with a base layer thickness. The IGBT includes a collector side and an emitter side arranged on opposite sides of the wafer. A first layer of a first conductivity type and a second layer of a second conductivity type are alternately arranged on the collector side. The first layer includes at least one first region with a first region width and at least one first pilot region with a first pilot region width. The second layer includes at least one second region with a second region width and at least one second pilot region with a second pilot region width. Each second region width is equal to or larger than the base layer thickness, whereas each first region width is smaller than the base layer thickness. Each second pilot region width is larger than each first pilot region width. Each first pilot region width is equal to or larger than two times the base layer thickness, and the sum of the areas of the second pilot regions is larger than the sum of the areas of the first pilot regions.
Abstract:
The power semiconductor device with a four-layer npnp structure can be turned-off via a gate electrode. The first base layer comprises a cathode base region adjacent to the cathode region and a gate base region adjacent to the gate electrode, but disposed at a distance from the cathode region. The gate base region has the same nominal doping density as the cathode base region in at least one first depth, the first depth being given as a perpendicular distance from the side of the cathode region, which is opposite the cathode metallization. The gate base region has a higher doping density than the cathode base region and/or the gate base region has a greater depth than the cathode base region in order to modulate the field in blocking state and to defocus generated holes from the cathode when driven into dynamic avalanche.
Abstract:
A fast recovery diode includes an n-doped base layer having a cathode side and an anode side opposite the cathode side. A p-doped anode layer is arranged on the anode side. The anode layer has a doping profile and includes at least two sublayers. A first one of the sublayers has a first maximum doping concentration, which is between 2*1016 cm−3 and 2*1017 cm−3 and which is higher than the maximum doping concentration of any other sublayer. A last one of the sublayers has a last sublayer depth, which is larger than any other sublayer depth. The last sublayer depth is between 90 to 120 μm. The doping profile of the anode layer declines such that a doping concentration in a range of 5*1014 cm−3 and 1*1015 cm−3 is reached between a first depth, which is at least 20 μm, and a second depth, which is at maximum 50 μm. Such a profile of the doping concentration is achieved by using aluminum diffused layers as the at least two sublayers.
Abstract translation:快速恢复二极管包括具有阴极侧和与阴极侧相对的阳极侧的n掺杂基极层。 p型掺杂阳极层设置在阳极侧。 阳极层具有掺杂分布并且包括至少两个子层。 第一个子层具有第一最大掺杂浓度,其在2×1016cm-3和2×1017cm-3之间,并且高于任何其它子层的最大掺杂浓度。 最后一个子层具有比任何其他子层深度大的最后一个子层深度。 最后的子层深度为90〜120μm。 阳极层的掺杂分布下降,使得在第一深度(至少20μm)和第二深度之间达到在5×10 14 cm -3和1×10 15 cm -3范围内的掺杂浓度,其中 最大为50μm。 通过使用铝扩散层作为至少两个子层来实现掺杂浓度的这种分布。
Abstract:
The power semiconductor device with a four-layer npnp structure can be turned-off via a gate electrode. The first base layer comprises a cathode base region adjacent to the cathode region and a gate base region adjacent to the gate electrode, but disposed at a distance from the cathode region. The gate base region has the same nominal doping density as the cathode base region in at least one first depth, the first depth being given as a perpendicular distance from the side of the cathode region, which is opposite the cathode metallization. The gate base region has a higher doping density than the cathode base region and/or the gate base region has a greater depth than the cathode base region in order to modulate the field in blocking state and to defocus generated holes from the cathode when driven into dynamic avalanche.
Abstract:
An exemplary method is disclosed for manufacturing a power semiconductor device which has a first electrical contact on a first main side and a second electrical contact on a second main side opposite the first main side and at least a two-layer structure with layers of different conductivity types, and includes providing an n-doped wafer and creating a surface layer of palladium particles on the first main side. The wafer is irradiated on the first main side with ions. Afterwards, the palladium particles are diffused into the wafer at a temperature of not more than 750° C., by which diffusion a first p-doped layer is created. Then, the first and second electrical contacts are created. At least the irradiation with ions is performed through a mask.
Abstract:
A method of manufacturing a power semiconductor device is provided. A first oxide layer is produced on a first main side of a substrate of a first conductivity type. A structured gate electrode layer with at least one opening is then formed on the first main side on top of the first oxide layer. A first dopant of the first conductivity type is implanted into the substrate on the first main side using the structured gate electrode layer as a mask, and the first dopant is diffused into the substrate. A second dopant of a second conductivity type is then implanted into the substrate on the first main side, and the second dopant is diffused into the substrate. After diffusing the first dopant into the substrate and before implanting the second dopant into the substrate, the first oxide layer is partially removed. The structured gate electrode layer can be used as a mask for implanting the second dopant.