Abstract:
An additive that contains an emulsion binder resin substantially free of non-emulsion binder resin, such as an emulsion acrylic resin, is mixed into a ceramic raw material powder containing, as its main constituent, a perovskite-type compound to form a ceramic slurry. Then, an orientational ceramic is prepared by subjecting the slurry to a forming process while simultaneously or sequentially applying a magnetic field and drying the slurry. An orientational ceramic, even formed from a substance which has small magnetic anisotropy, such as PZT, is obtained.
Abstract:
An additive that contains an emulsion binder resin substantially free of non-emulsion binder resin, such as an emulsion acrylic resin, is mixed into a ceramic raw material powder containing, as its main constituent, a perovskite-type compound to form a ceramic slurry. Then, an orientational ceramic is prepared by subjecting the slurry to a forming process while simultaneously or sequentially applying a magnetic field and drying the slurry. An orientational ceramic, even formed from a substance which has small magnetic anisotropy, such as PZT, is obtained.
Abstract:
A piezoelectric ceramic having excellent electrical characteristics, and in which all of three crystallographic axes are oriented is obtained by slip cast or sheet forming a ceramic slurry containing plate-shaped ceramic particles in magnetic field. The degree of orientation of a first axis (for example, a c axis) calculated with the Lotgering method based on an X-ray diffraction (XRD) pattern in a prescribed cross-section of this piezoelectric ceramic is not less than 0.30. With a cross-section where the degree of orientation of the first axis indicates a maximum value being defined as a reference plane, the degree of orientation of a second axis (for example, an a axis) calculated with the Lotgering method based on an X-ray diffraction pattern in a cross-section orthogonal to this reference plane is not less than 0.20. The degree of orientation of the second axis is represented by a value in such a cross-section that the degree of orientation of the second axis attains to a maximum value, among cross-sections orthogonal to the reference plane.
Abstract:
A piezoelectric ceramic base body that has a polyhedral shape having shape anisotropy, such as a rectangular parallelepiped shape, and which has opposed faces on which external electrodes are formed. The opposed faces have first sides and second sides. Between the first side and the second side of one of the opposed faces, a width dimension of the surface in a direction orthogonal to the first side and the second side is larger than a length dimension of each of the first and the second sides. The crystal axis is {100} oriented in a direction parallel to the first and the second sides, and a degree of orientation by a Lotgering method is 0.4 or more.
Abstract:
Piezoelectric oriented ceramics containing a Pb(Ti, Zr)O3-based compound having a high degree of orientation not lower than 0.64, which was calculated with the Lotgering method based on an X-ray diffraction pattern in a prescribed cross-section thereof, and having a sintered density not lower than 85% of a theoretical density.
Abstract:
A piezoelectric ceramic electronic component that includes a piezoelectric ceramic body including at least one piezoelectric ceramic layer; and a plurality of electrodes on a surface or inside of the piezoelectric ceramic body and arranged so that the at least one piezoelectric ceramic layer is sandwiched between adjacent electrodes of the plurality of electrodes. The at least one piezoelectric ceramic layer is a ceramic sintered body containing a potassium sodium niobate-based compound and Mn. When the at least one piezoelectric ceramic layer sandwiched between the adjacent electrodes is divided into three equal parts in a thickness direction to sequentially define a first region, a second region, and a third region between the adjacent electrodes, a second Mn concentration in the second region is higher than a first Mn concentration in the first region and a third Mn concentration in the third region.
Abstract:
A piezoelectric ceramic base body that has a polyhedral shape having shape anisotropy, such as a rectangular parallelepiped shape, and which has opposed faces on which external electrodes are formed. The opposed faces have first sides and second sides. Between the first side and the second side of one of the opposed faces, a width dimension of the surface in a direction orthogonal to the first side and the second side is larger than a length dimension of each of the first and the second sides. The crystal axis is {100} oriented in a direction parallel to the first and the second sides, and a degree of orientation by a Lotgering method is 0.4 or more.
Abstract:
Piezoelectric oriented ceramics containing a Pb(Ti, Zr)O3-based compound having a high degree of orientation not lower than 0.64, which was calculated with the Lotgering method based on an X-ray diffraction pattern in a prescribed cross-section thereof, and having a sintered density not lower than 85% of a theoretical density.