Abstract:
A dryness/wetness responsive sensor having decreased size, and improved sensitivity and responsiveness. The present invention comprises a thin wire of a first metal and a thin wire of a second metal, which is different from the first metal, wherein the thin wires run in juxtaposition with each other on an insulating substrate, and wherein the spacing between the first thin wire and the second thin wire is in the range of 5 nm or more and less than 20 μm.
Abstract:
A condensation detection element comprises a condensation detection unit, the condensation detection unit being formed on a first substrate unit, and a peripheral circuit unit, the peripheral circuit unit being formed on a second substrate unit. The condensation detection unit comprises a thin wire electrode of a first metal and a thin wire electrode of a second metal. The condensation detection unit is configured to detect the presence or absence of water droplet that comes into contact with the thin wire electrode of the first metal and the thin wire electrode of the second metal by a current flowing between the thin wire electrode of the first metal and the thin wire electrode of the second metal. The first substrate unit has a higher thermal conductivity and a lower heat capacity than the second substrate unit.
Abstract:
The purpose of the present invention is to realize a dew point measurement in which the generation of dew condensation is directly detected and the detection can be performed without using any optical system. In particular, the purpose of the present invention is to realize a dew point measuring device that is compact and has a high sensitivity. According to one embodiment of the present invention, a sudden change in current values before and after the dew point is detected by detecting the dew condensation to detect a galvanic current that flows due to a water droplet attached onto a surface of an insulating substrate on which thin wires of dissimilar metals are juxtaposed, and by controlling the temperature on the surface of the substrate. In this way, the dew point measurement in which the dew point can be directly measured and a measurement with simple configuration and high accuracy can be performed can be realized.
Abstract:
The present invention is to provide a prevention method and a prevention system for preventing dew condensation and light scattering due to the dew condensation. According to one embodiment of the present invention, a fine liquid droplet capable of causing dew condensation is detected by a detection means for detecting a fine liquid droplet, and then the fine liquid droplet is removed on the basis of the detection. The detection means comprises a first thin wire made of a first metal, and a second thin wire made of a second metal or a semiconductor, the second metal is different from the first metal, the first thin wire and the second thin wire are disposed in juxtaposition with each other on an insulating substrate, and a spacing between the first thin wire and the second thin wire is in a range of 20 nm or more and 10000 nm or less. Further, provided is a prevention system including a detection means for detecting a fine liquid droplet, a removing means for removing the fine liquid droplet, and a control means for controlling the removing means on the basis of information from the detection means.
Abstract:
The present invention is to provide a small-sized dryness/wetness responsive sensor that detects a galvanic current with a high sensitivity as a principle of operation. According to one embodiment of the present invention, a dryness/wetness responsive sensor comprises a thin wire made of a first metal and a thin wire made of a second metal, the second metal is different from the first metal, the thin wire of the first metal and the thin wire of the second metal are disposed in juxtaposition with each other on an insulating substrate, and a surface state of a part between the thin wire of the first metal and the thin wire of the second metal is hydrophilic or hydrophobic.
Abstract:
The purpose of the present invention is to measure a size of a liquid droplet easily and in a short period of time by combining outputs of multiple types of liquid droplet detectors having different size dependencies of a liquid droplet of detection signals. In one embodiment of the present invention, in the detector having a narrow gap width shown in FIG. 5(a), the electrodes are electrically conducted by the attachment of a small liquid droplet. On the other hand, in the detectors with a wide gap width shown in FIGS. 5(b) and 5(c), the electrodes are not electrically conducted unless a liquid droplet having a larger size is attached. By utilizing this, the size of a liquid droplet is determined. In a case where the liquid droplet is water, as a liquid droplet detector, for example, a detector of a type that detects a galvanic current by a cell formed by the attachment of water between the electrodes made of different kinds of metals may be used.
Abstract:
A conductive polymer-metal complex becomes to be adhered simply and strongly on the surface of a substrate such as PTFE. By subjecting a solution containing a monomer which provides a conductive polymer, an anion, and a metal ions such as Ag+, Cu2+, Cu+ and the like to an irradiation with light having an energy required for exciting an electron to an energy level capable of reducing the metal ion, such as ultraviolet light, under an appropriated condition, thereby precipitating the conductive polymer-metal complex as being dispersed in the reaction liquid. By supplying this dispersion liquid onto various substrates, the complex microparticles in the dispersion liquid enter into and mate with the narrow holes on the surface of the substrate. As a result, the complex precipitate formed on the surface of the substrate and the substrate can be adhered strongly to each other.
Abstract:
A conductive polymer-metal complex becomes to be adhered simply and strongly on the surface of a substrate such as PTFE. By subjecting a solution containing a monomer which provides a conductive polymer, an anion, and a metal ions such as Ag+, Cu2+, Cu+ and the like to an irradiation with light having an energy required for exciting an electron to an energy level capable of reducing the metal ion, such as ultraviolet light, under an appropriated condition, thereby precipitating the conductive polymer-metal complex as being dispersed in the reaction liquid. By supplying this dispersion liquid onto various substrates, the complex microparticles in the dispersion liquid enter into and mate with the narrow holes on the surface of the substrate. As a result, the complex precipitate formed on the surface of the substrate and the substrate can be adhered strongly to each other.
Abstract:
A resist film structure is provided, which allows a resist layer to have improved photosensitivity to EUV or electron beams without changing the photosensitivity of the resist material itself. A metal layer 1 with a thickness as small as a nanometer level is provided on a resist polymer layer 2 formed on a substrate 3. When the resist layer in this structure is exposed to light, the metal layer 1 produces a surface plasmon effect to enhance the irradiation to the resist film, so that the photosensitivity of the resist film is improved.