Abstract:
The purpose of the present disclosure is to provide a CNT fiber that is constituted of aligned carbon nanotubes (CNTs), is thin, has little irregularity in thickness, has excellent winding properties when undergoing coiling processing, and has superior conductivity. Provided is a CNT fiber constituted of carbon nanotubes (CNTs) having a thickness of 0.01 μm-3 mm, having a coefficient of variation for irregularity in thickness of 0.2 or less, having a distribution rate a for deviation from roundness of 40% or greater, and a distribution rate b of 70% or greater. Also provided is a method for manufacturing the CNT fiber.
Abstract:
The purpose of the present disclosure is to provide a CNT fiber that is constituted of aligned carbon nanotubes (CNTs), is thin, has little irregularity in thickness, has excellent winding properties when undergoing coiling processing, and has superior conductivity. Provided is a CNT fiber constituted of carbon nanotubes (CNTs) having a thickness of 0.01 μm-3 mm, having a coefficient of variation for irregularity in thickness of 0.2 or less, having a distribution rate a for deviation from roundness of 40% or greater, and a distribution rate b of 70% or greater. Also provided is a method for manufacturing the CNT fiber.
Abstract:
A method of initializing a multiferroic element for obtaining a stable element operation includes applying at least one selected from a group consisting of an electric field and a magnetic field to the multiferroic element under a temperature condition equal to or higher than a phase transition temperature. The multiferroic element has a laminated structural body including a first alloy layer and a second alloy layer. The first alloy layer is formed by using any of antimony-tellurium, bismuth-tellurium and bismuth-selenium as a principal component. The second alloy layer is laminated on the first alloy layer, and formed by using a compound represented by the following general formula (1) as a principal component. The second alloy layer is configured to undergo phase transition between a reset phase and a set phase. Electric polarization is not caused in the reset phase, but caused in the set phase. The second alloy layer undergoes the phase transition from the reset phase to the set phase at the phase transition temperature.[Chemical Formula 1] M1-xTex (1) Here, in the above-mentioned general formula (1), M represents an atom of any of germanium, aluminum and silicon, and x represents a numerical value of 0.5 or more and lower than 1.
Abstract:
A crystal orientation layer laminated structure capable of widely selecting materials for a base substrate and an electrode substrate, an electronic memory using the crystal orientation layer laminated structure and a method for manufacturing the crystal orientation layer laminated structure are provided. The crystal orientation layer laminated structure according to the present invention has such a feature as including a substrate, including an orientation control layer which is laminated on the substrate, which is made of any of germanium, silicon, tungsten, germanium-silicon, germanium-tungsten and silicon-tungsten, and whose thickness is at least 1 nm or more, and including a first crystal orientation layer which is laminated on the orientation control layer, which is made of any of SbTe, Sb2Te3, BiTe, Bi2Te3, BiSe and Bi2Se3 as a main component, and which is oriented in a certain crystal orientation
Abstract:
A method of initializing a multiferroic element for obtaining a stable element operation includes applying at least one selected from a group consisting of an electric field and a magnetic field to the multiferroic element under a temperature condition equal to or higher than a phase transition temperature. The multiferroic element has a laminated structural body including a first alloy layer and a second alloy layer. The first alloy layer is formed by using any of antimony-tellurium, bismuth-tellurium and bismuth-selenium as a principal component. The second alloy layer is laminated on the first alloy layer, and formed by using a compound represented by the following general formula (1) as a principal component. The second alloy layer is configured to undergo phase transition between a reset phase and a set phase. Electric polarization is not caused in the reset phase, but caused in the set phase. The second alloy layer undergoes the phase transition from the reset phase to the set phase at the phase transition temperature.[Chemical Formula 1] M1-xTex (1) Here, in the above-mentioned general formula (1), M represents an atom of any of germanium, aluminum and silicon, and x represents a numerical value of 0.5 or more and lower than 1.
Abstract:
A crystal orientation layer laminated structure capable of widely selecting materials for a base substrate and an electrode substrate, an electronic memory using the crystal orientation layer laminated structure and a method for manufacturing the crystal orientation layer laminated structure are provided. The crystal orientation layer laminated structure according to the present invention has such a feature as including a substrate, including an orientation control layer which is laminated on the substrate, which is made of any of germanium, silicon, tungsten, germanium-silicon, germanium-tungsten and silicon-tungsten, and whose thickness is at least 1 nm or more, and including a first crystal orientation layer which is laminated on the orientation control layer, which is made of any of SbTe, Sb2Te3, BiTe, Bi2Te3, BiSe and Bi2Se3 as a main component, and which is oriented in a certain crystal orientation.
Abstract:
Provided are an electronic/optical device, which is reduced in contact resistance occurring between a layered material layer and a metal electrode layer, and a method of manufacturing the device. The electronic/optical device of the present invention includes a laminated structure in which an intermediate layer is arranged between a layered material layer (2) and a metal electrode layer (3). The intermediate layer is a crystal layer (4) of an intermediate layer-forming material containing: at least one of Sb and Bi; and Te. In addition, the method of manufacturing an electronic/optical device of the present invention includes: an intermediate layer-forming step of forming, on the layered material layer (2), the intermediate layer (crystal layer (4)) obtained by crystallizing an intermediate layer-forming material containing: at least one of Sb and Bi; and Te; and a metal electrode layer-forming step of forming the metal electrode layer (3) on the intermediate layer.