Abstract:
Infrared reflecting substrate includes, on a transparent film base, an infrared reflecting layer mainly made of silver and a light absorptive metal layer in this order. The light absorptive metal layer has a thickness of 15 nm or less, and a transparent protective layer has a thickness of 10 nm to 120 nm. The distance between the light absorptive metal layer and the transparent protective layer is 25 nm or less.
Abstract:
Disclosed is an infrared reflective film (100) configured by disposing an infrared ray reflective layer (20) and a transparent protective layer (30) on a transparent film backing (10) in this order. The infrared ray reflective layer (20) comprises: a first metal oxide layer (21); a metal layer (25) comprising a primary component consisting of silver; and a second metal oxide layer (22) comprised of a composite metal oxide containing zinc oxide and tin oxide, which are arranged in this order from the side of the transparent film backing (10). The transparent protective layer (30) lies in direct contact with the second metal oxide layer (22). The transparent protective layer (30) has a thickness of 30 nm to 150 nm, and is preferably an organic layer having a cross-linked structure derived from an ester compound having an acidic group and a polymerizable functional group in the same molecule.
Abstract:
Provided is an infrared reflective substrate having both a high visible light transmittance and a high heat shielding property. The infrared reflective substrate comprises a transparent substrate member and an infrared reflective layer, wherein the infrared reflective substrate has a visible light absorption rate of 0.3 or less, and a reflectance whose slope in a wavelength range of 700 nm to 600 nm is 0.12 or more.
Abstract:
Infrared reflecting film includes, on a transparent film substrate, a metal oxide layer, an infrared reflecting layer mainly made of silver, and a light absorptive metal layer, in this order. No metal layer is disposed between the transparent film substrate and the infrared reflecting layer. The metal oxide layer is preferably formed of a composite metal oxide including zinc oxide and tin oxide. The light absorptive metal layer has a thickness of 2 nm to 10 nm and includes at least one selected from the group consisting of nickel, chromium, niobium, tantalum, and titanium.
Abstract:
A heat-ray-transmission-controllable, light-transmissive base material is provided that includes a light-transmissive insolation-cutting unit configured to control transmission of light in at least a part of wavelength regions among wavelength regions of visible light and near-infrared light; and a transparent conductive oxide layer disposed over the light-transmissive insolation-cutting unit, containing a transparent conductive oxide.
Abstract:
The infrared reflecting substrate includes a first metal oxide layer, a second metal oxide layer and a metal layer in this order on a transparent substrate. The second metal oxide layer and the metal layer are in direct contact with each other. The first metal oxide layer has a refractive index of 2.2 or more. The second metal oxide layer is formed of a metal oxide that contains tin oxide and zinc oxide, and an oxygen content of the metal oxide is less than the stoichiometric composition. The second metal oxide layer is deposited by a DC sputtering method.
Abstract:
A solar heat collector includes a heat collecting board, a solar radiation absorbing layer provided at one surface in a thickness direction of the heat collecting board, and a low emissivity and low solar reflectance layer provided at one surface in the thickness direction of the solar radiation absorbing layer.
Abstract:
The method for manufacturing an infrared reflecting film comprises, in order: a metal layer forming step of depositing a metal layer on a transparent film substrate; a metal oxide layer forming step of depositing a surface-side metal oxide layer by DC sputtering on the metal layer so as to be in direct contact with the metal layer; and a transparent protective layer forming step of depositing a transparent protective layer on the surface-side metal oxide layer. In the metal oxide layer forming step, a sputtering target used for DC sputtering contains zinc atoms and tin atoms, and is preferably formed by sintering a metal powder and at least one metal oxide among zinc oxide and tin oxide. In the surface-side metal oxide layer forming step, an inert gas and an oxygen gas are introduced into a sputtering chamber. The oxygen concentration in the gas introduced to the sputtering chamber is preferably not more than 8 vol %.
Abstract:
An infrared reflecting film includes an infrared reflecting layer having a metal layer and a metal oxide layer and a transparent protective layer in this order on a transparent film substrate. In the manufacturing method, the metal oxide layer is deposited by a DC sputtering method using a roll-to-roll sputtering apparatus. A sputtering target used in the DC sputtering method contains zinc atoms and tin atoms. The sputtering target is preferably obtained by sintering a metal powder and at least one metal oxide among zinc oxide and tin oxide.
Abstract:
An infrared-ray reflective film (100) of the present invention is configured by disposing an infrared reflective layer (20) and a transparent protective layer (30) on a transparent film backing (10) in this order. The infrared reflective layer (20) comprises: a first metal oxide layer (21); a metal layer (25) made of a silver alloy containing silver in an amount of 96 to 99.9 weight%; and a second metal oxide layer (22), which are arranged in this order from the side of the transparent film backing (10), wherein each of the first metal oxide layer (21) and the second metal oxide layer (22) is in direct contact with the metal layer (25). There is no metal layer between the transparent film backing (10) and the infrared reflective layer (20) and between the infrared reflective layer (20) and the transparent protective layer (30). Preferably, the infrared-ray reflective film of the present invention has a visible ray transmittance of 65% or more, a shading coefficient of less than 0.60, and a corrected emissivity as measured from the side of the transparent protective layer of 0.20 or less.