Abstract:
Aspects of the present disclosure are directed to circuits, apparatuses and methods for generating communication signals resistant to early-detect-late-commit attacks. An example embodiment, a plurality of data symbols is generated that includes first and second data symbols. A communication signal is generated that is decodable according to a mapping of the first and second data symbols to respective first and second waveforms. The first waveform has a leading edge that is indicative of the first waveform, and second waveform has a second leading edge that is indicative of the second waveform. In generating the communication signal, a first portion of the communication signal is modulated according to the first waveform for the first data symbol. A second portion of the communication signal is modulated, for the second data symbol, according to a modified second waveform having a leading edge that is indicative of the first waveform.
Abstract:
Aspects of the disclosure are directed to detecting interactions with signals, such as by an attacker attempting to gain access to a vehicle. Signal waveforms used for authentication are evaluated, for communications between respective circuits. Possible interaction by a third circuit is analyzed by detecting variations in characteristics of a leading portion of a data symbol relative to known characteristics of the leading portion of the data signal. A condition indicative of whether the signal waveform has been interacted with and retransmitted is determined, based on the detected variations. For instance, if the variations are indicative of a known type of variation induced by interaction and retransmission, such interaction and transmission can be detected. Where the determined condition is not deemed an attack, an output signal that provides vehicle access is generated based on the determined condition.
Abstract:
Various exemplary embodiments relate to a method for detecting an object using radar system having M transmit antennas, N receive antennas, and a processor, including: receiving, by the processor, N×M digital signals, wherein the N receivers receive M received signals corresponding to M sequences of encoded transmitted signals resulting in N×M digital signals; processing the N×M digital signals to produce N×M first range/relative velocity matrices; applying a phase compensation to N×(M−1) first range/relative velocity matrices to compensate for a difference in range between the N×(M−1) first range/relative velocity matrices and the Mth range/velocity matrix; decoding the M phase compensated range/relative velocity matrices for the N receivers using an inverse of the transmit encoding to produce M decoded phase range/relative velocity matrices for the N receivers; detecting objects using the M range/relative velocity matrices for the N receivers to produce a detection vector.
Abstract:
Aspects of the present disclosure are directed to apparatuses and methods involving the detection of signal characteristics. As may be implemented in accordance with one or more embodiments, an apparatus includes a radar or sonar transceiver that transmits signals and receives reflections of the transmitted signals. A data compression circuit determines a compression factor based on characteristics of the signals, such as may relate to a channel over which the signal passes and/or related aspects of an object from which the signals are reflected (e.g., velocity, trajectory and distance). Data representing the signals is compressed as a function of the determined compression factor.
Abstract:
Various exemplary embodiments relate to a method for determining the velocity of an object using radar system having a processor, including: receiving, by a processor, a first digital signal corresponding to a first transmit signal; receiving, by the processor, a second digital signal corresponding to a second transmit signal; processing the first digital signal to produce a first range/relative velocity matrix; detecting objects in the first range/relative velocity matrix to produce a first detection vector; unfolding the first detection vector; processing the second digital signal to produce a second range/relative velocity matrix; interpolating the second range/relative velocity matrix in the relative velocity direction wherein the interpolated second range/relative velocity matrix has a frequency spacing corresponding to the frequency spacing of the first range/relative range velocity matrix in the relative velocity direction; detecting objects in the second range/relative velocity matrix to produce a second detection vector; unfolding the second detection vector; and determining a true velocity of the detected objects based upon the unfolded first and second detection vectors.
Abstract:
Disclosed is an integrated sensor chip package comprising an integrated sensor chip enveloped in a packaging layer (30), the integrated circuit comprising a substrate (10) having a major surface; and a light sensor comprising a plurality of photodetectors (12a-d) on a region of said major surface; the packaging layer comprising an opening (32) exposing said region, the integrated sensor chip package further comprising a light blocking member (20) over said opening, the light blocking member defining an aperture (22) exposing a first set of photodetectors to light from a first range of directions and exposing a second set of photodetectors to light from a second range of directions, wherein the first range is different to the second range. An apparatus including such an integrated sensor chip package and a method of manufacturing such an integrated sensor chip package are also disclosed.
Abstract:
Aspects of the disclosure are directed to detecting interactions with signals, such as by an attacker attempting to gain access to a vehicle. Signal waveforms used for authentication are evaluated, for communications between respective circuits. Possible interaction by a third circuit is analyzed by detecting variations in characteristics of a leading portion of a data symbol relative to known characteristics of the leading portion of the data signal. A condition indicative of whether the signal waveform has been interacted with and retransmitted is determined, based on the detected variations. For instance, if the variations are indicative of a known type of variation induced by interaction and retransmission, such interaction and transmission can be detected. Where the determined condition is not deemed an attack, an output signal that provides vehicle access is generated based on the determined condition.
Abstract:
Various exemplary embodiments relate to a method for determining the velocity of an object using radar system having a processor, including: receiving, by a processor, a first digital signal corresponding to a first transmit signal; receiving, by the processor, a second digital signal corresponding to a second transmit signal; processing the first digital signal to produce a first range/relative velocity matrix; detecting objects in the first range/relative velocity matrix to produce a first detection vector; unfolding the first detection vector; processing the second digital signal to produce a second range/relative velocity matrix; interpolating the second range/relative velocity matrix in the relative velocity direction wherein the interpolated second range/relative velocity matrix has a frequency spacing corresponding to the frequency spacing of the first range/relative range velocity matrix in the relative velocity direction; detecting objects in the second range/relative velocity matrix to produce a second detection vector; unfolding the second detection vector; and determining a true velocity of the detected objects based upon the unfolded first and second detection vectors.
Abstract:
Disclosed is an integrated circuit comprising a substrate having a major surface; a directional light sensor, the directional light sensor comprising a plurality of photodetectors on a region of said major surface, said plurality of photodetectors comprising a set of first photodetectors for detecting light from a first direction and a set of second photodetectors for detecting light from a second direction, wherein a first photodetector is located adjacent to a second photodetector; and a light blocking structure comprising a first portion extending from said major surface in between the first photodetector and the second photodetector; and a second portion extending from the first portion and at least partially overhanging at least one of the first photodetector and the second photodetector. A device including such an IC and a method of manufacturing such an IC are also disclosed.
Abstract:
Disclosed is an integrated circuit comprising a substrate having a major surface; a directional light sensor, the directional light sensor comprising a plurality of photodetectors on a region of said major surface, said plurality of photodetectors comprising a set of first photodetectors for detecting light from a first direction and a set of second photodetectors for detecting light from a second direction, wherein a first photodetector is located adjacent to a second photodetector; and a light blocking structure comprising a first portion extending from said major surface in between the first photodetector and the second photodetector; and a second portion extending from the first portion and at least partially overhanging at least one of the first photodetector and the second photodetector. A device including such an IC and a method of manufacturing such an IC are also disclosed.