摘要:
A multi-port semiconductor memory device having variable access paths and a method therefor are provided. The semiconductor memory device includes a plurality of input/output ports; a memory array divided into a plurality of memory areas; and a select control unit to variably control access paths between the memory areas and the input/output ports so that each memory area is accessed through at least one of the input/output ports.
摘要:
A multi-port semiconductor memory device having variable access paths and a method therefor are provided. The semiconductor memory device includes a plurality of input/output ports; a memory array divided into a plurality of memory areas; and a select control unit to variably control access paths between the memory areas and the input/output ports so that each memory area is accessed through at least one of the input/output ports.
摘要:
A semiconductor memory device includes ports, data line pairs, where each port associated with one of the data line pairs, sets of address lines, where each port associated with one of the sets of address lines, a shared memory region of a memory cell array, where the shared memory region accessible through the ports, an access controller coupled to the ports and configured to generate an access selection signal in response to a plurality of control signals received through the ports, and an access router coupled to the shared memory region, the data line pairs, and the sets of address lines, the access router configured to selectively couple one of the sets of address lines and one of the data line pairs to the shared memory region in response to the access selection signal.
摘要:
A semiconductor memory device includes a semiconductor die and an input-output bump pad part. The semiconductor die includes a plurality of memory cell arrays. The input-output bump pad part is formed in a central region of the semiconductor die. The input-output bump pad part provides a plurality of channels for connecting each of the memory cell arrays independently to an external device. The semiconductor memory device may adopt the multi-channel interface, thereby having high performance with relatively low power consumption.
摘要:
Disclosed is a method of controlling a deep power down mode in a multi-port semiconductor memory having a plurality of ports connected to a plurality of processors. Control of the deep power down mode in the multi-port semiconductor memory is performed such that activation/deactivation of the deep power down mode are determined in accordance with signals applied through various ports in the plurality of ports.
摘要:
A multiport semiconductor memory device includes; first and second port units respectively coupled to first and second processors, first and second dedicated memory area accessed by first and second processors, respectively and implemented using DRAM cells, a shared memory area commonly accessed by the first and second processors via respective first and second port units and implemented using memory cells different from the DRAM cells implementing the first and second dedicated memory areas, and a port connection control unit controlling data path configuration between the shared memory area and the first and second port units to enable data communication between the first and second processors through the shared memory area.
摘要:
A refresh control circuit in a semiconductor memory device includes a refresh controller, a voltage generator and a word line enable circuit. The refresh period controller generates a control signal in response to a self-refresh signal, the control signal indicating a nominal initiation of a refresh period. The voltage generator generates an output voltage in response to the control signal. The output voltage is boosted from a low voltage to a high voltage during the refresh period. The word line enable circuit generates a word line enable signal in response to the control signal, wherein the word line enable signal is activated following a delay after the nominal initiation of the refresh period, and the delay allows the voltage generator to fully boost the output voltage.
摘要:
Provided is a stacked semiconductor device including n stacked chips. Each chip includes “j” corresponding upper and lower electrodes, wherein j is a minimal natural number greater than or equal to n/2, and an identification code generator including a single inverter connecting one of the j first upper electrode to a corresponding one of the j lower electrodes. The upper electrodes receive a previous identification code, rotate the previous identification code by a unit of 1 bit, and invert 1 bit of the rotated previous identification code to generate a current identification code. The current identification code is applied through the j lower electrodes and corresponding TSVs to communicate the current identification code to the upper adjacent chip.
摘要:
A semiconductor memory device includes a semiconductor die and an input-output bump pad part. The semiconductor die includes a plurality of memory cell arrays. The input-output bump pad part is formed in a central region of the semiconductor die. The input-output bump pad part provides a plurality of channels for connecting each of the memory cell arrays independently to an external device. The semiconductor memory device may adopt the multi-channel interface, thereby having high performance with relatively low power consumption.
摘要:
A multipath accessible semiconductor memory device provides an interface function between processors. The memory device may include a memory cell array having a shared memory area operationally coupled to two or more ports that are independently accessible by two or more processors, an access path forming unit to form a data access path between one of the ports and the shared memory area in response to external signals applied by the processors, and an interface unit having a semaphore area and mailbox areas accessible in the shared memory area by the two or more processors to provide an interface function for communication between the two or more processors.