Abstract:
A UV-curable and printable combination separator and solid electrolyte precursor material for lithium ion batteries is provided. The precursor material includes a lithium salt dissolved in one or more organic solvents. A UV-curable monomer is included in an amount from approximately 4 weight percent to approximately 10 weight percent along with a UV-initiator. One or more host ion conductive polymers are provided in an amount less than approximately 5 weight percent of the precursor material and a ceramic powder. The precursor material, when cured, has sufficient mechanical rigidity to act as a separator preventing electrical shorting between a lithium ion battery cathode and a lithium ion battery anode. It also has sufficient electrical conductivity to function as an electrolyte for a lithium ion battery. A method for making a lithium ion battery is also provided where printing allows the formation of batteries with complex shapes.
Abstract:
A UV-curable and printable combination separator and solid electrolyte precursor material for lithium ion batteries is provided. The precursor material includes a lithium salt dissolved in one or more organic solvents. A UV-curable monomer is included in an amount from approximately 4 weight percent to approximately 10 weight percent along with a UV-initiator. One or more host ion conductive polymers are provided in an amount less than approximately 5 weight percent of the precursor material and a ceramic powder. The precursor material, when cured, has sufficient mechanical rigidity to act as a separator preventing electrical shorting between a lithium ion battery cathode and a lithium ion battery anode. It also has sufficient electrical conductivity to function as an electrolyte for a lithium ion battery. A method for making a lithium ion battery is also provided where printing allows the formation of batteries with complex shapes.
Abstract:
The present invention relates to methods of fabricating transparent conductive films based on nanomaterials, in particular, silver nanowires. The present invention incorporates a single step of annealing and patterning the conductive films by using a high energy flash lamp without post treatment to improve the conductivity and create substantially invisible patterns on the films for use in touch panel or display manufacturing industry.
Abstract:
A self-densifying interconnection is formed between a high-temperature semiconductor device selected from a GaN or SiC-based device and a substrate. The interconnection includes a matrix of micron-sized silver particles in an amount from approximately 10 to 60 weight percent; the micron-sized silver particles having a particle size ranging from approximately 0.1 microns to 15 microns. Bonding particles are used to chemically bind the matrix of micron-sized silver particles. The bonding particles are core silver nanoparticles with in-situ formed surface silver nanoparticles chemically bound to the surface of the core silver nanoparticles and, at the same time, chemically bound to the matrix of micron-sized silver particles. The bonding particles have a core particle size ranging from approximately 10 to approximately 100 nanometers while the in-situ formed surface silver nanoparticles have a particle size of approximately 3-9 nanometers.
Abstract:
The present disclosure provides a pressure sensor composition that includes a crosslinked polymer, a conductive carbon material and an elastomeric rubber, pressure sensors including the same, and methods of preparation and use thereof.
Abstract:
The present invention provides a lithium metal battery having a lithium metal electrode including a cathode, an anode, a separator positioned between the cathode and the anode, an electrolyte, and a lithium metal negative electrode. The lithium metal negative electrode includes a lithium reactive metal layer, the lithium reactive metal layer being formed on a support conductive layer. A dendrite-suppressing coating is formed over the lithium reactive metal layer; the dendrite-suppressing coating is a displacement-reacted metal including silver reacted from decomposition of a silver salt and having an interface reaction product formed from a reaction between the silver salt and the lithium reactive metal layer. The interface reaction product is positioned between the displacement-reacted metal layer and the lithium reactive metal layer. The dendrite suppressing coating permits lithium metal ions to permeate the coating to react electrolytically in an overall battery reaction.
Abstract:
A quasi-solid-state battery formed from non-gas evolving in-situ curing of a quasi-solid-state electrolyte that includes a high swelling polymer made from a monomer with good compatibility with liquid electrolytes, and has a good reactivity for facile non-gas evolving in-situ polymerization. The monomer can be based on acrylate polymerization chemistry or an allyl group polymerization chemistry. Non-gas evolving initiators are used for non-gas evolving in-situ polymerization of acrylate or allyl monomer-based QSE. The resulting QSE additionally has high ionic conductivity, allowing for a high battery output, and a wide electrochemical window (stable for lithium metal anode and high-voltage cathodes). The resulting quasi solid electrolyte battery is not only easy to fabricate using conventional battery manufacturing practices, the non-gas evolving in-situ polymerization causes the QSE to be uniformly distributed within the battery, ensuring high-quality, safe battery performance and longevity.
Abstract:
A pressure distribution mapping system includes a flexible M×N textile-based pressure sensor array. with first and second electrode textile layers and a piezoresistive fabric layer with a sheet resistance of at least 60 k-ohm/square positioned between the first and second electrode textile layers. Individual pressure sensors are formed by an intersection between a row electrically-conductive path and a column electrically-conductive path along with the portion of the piezoresistive layer positioned at the intersection. A measurement system measures the resistance of each pressure sensor of the pressure sensor array. The measurement system includes a reading module with first op-amps connected to each row and second op-amps connected to each column. Plural switches switch between pressure sensor-enabled and pressure sensor-disabled positions to minimize a bus line crosstalk effect during pressure sensor reading A processor scans each pressure sensor and generates a pressure distribution profile based on a measured resistance of each pressure sensor.
Abstract:
A solventless method of making a dry electrode for an electrochemical cell is provided. A solventless electrode material mixture includes 85-99% electrode active material and from 0-10% conductive carbon additive. A polymer binder system is present from 1-15%. The polymer binder system includes one or more polymer binders. The electrode material mixture is mixed at a temperature greater than a softening point or a melting point of at least one polymer binder of the polymer binder system. The electrode material mixture is kneaded into an electrode material dough. The electrode material dough is formed into an electrode material sheet. At least a portion of the electrode material sheet is affixed to a metal current collector to form an electrode.
Abstract:
The present invention provides a thin, bendable, printed, layered primary battery structure without a battery separator. The battery includes a first layer including a printed positive electrode. A second layer includes a negative electrode material which may be a printed negative electrode or a metal foil negative electrode. An adhesive, UV-curable intermediate layer is adhered to the first layer on a first side of the intermediate layer and is adhered to the second layer on a second side of the intermediate layer. The intermediate layer includes a water-soluble electroactive material and a water-soluble viscosity-regulating polymer in an amount sufficient to render the intermediate layer adhesive. The intermediate layer also includes a water-insoluble polymer matrix having sufficient rigidity to prevent contact of the first layer and the second layer. A flexible package encases the first, second, and intermediate layers.