Printable Solid Electrolyte for Flexible Lithium Ion Batteries

    公开(公告)号:US20190190065A1

    公开(公告)日:2019-06-20

    申请号:US16217001

    申请日:2018-12-11

    CPC classification number: H01M10/0562 H01M10/0525 H01M10/058

    Abstract: A UV-curable and printable combination separator and solid electrolyte precursor material for lithium ion batteries is provided. The precursor material includes a lithium salt dissolved in one or more organic solvents. A UV-curable monomer is included in an amount from approximately 4 weight percent to approximately 10 weight percent along with a UV-initiator. One or more host ion conductive polymers are provided in an amount less than approximately 5 weight percent of the precursor material and a ceramic powder. The precursor material, when cured, has sufficient mechanical rigidity to act as a separator preventing electrical shorting between a lithium ion battery cathode and a lithium ion battery anode. It also has sufficient electrical conductivity to function as an electrolyte for a lithium ion battery. A method for making a lithium ion battery is also provided where printing allows the formation of batteries with complex shapes.

    Printable Solid Electrolyte for Flexible Lithium Ion Batteries

    公开(公告)号:US20210143471A1

    公开(公告)日:2021-05-13

    申请号:US17153887

    申请日:2021-01-21

    Abstract: A UV-curable and printable combination separator and solid electrolyte precursor material for lithium ion batteries is provided. The precursor material includes a lithium salt dissolved in one or more organic solvents. A UV-curable monomer is included in an amount from approximately 4 weight percent to approximately 10 weight percent along with a UV-initiator. One or more host ion conductive polymers are provided in an amount less than approximately 5 weight percent of the precursor material and a ceramic powder. The precursor material, when cured, has sufficient mechanical rigidity to act as a separator preventing electrical shorting between a lithium ion battery cathode and a lithium ion battery anode. It also has sufficient electrical conductivity to function as an electrolyte for a lithium ion battery. A method for making a lithium ion battery is also provided where printing allows the formation of batteries with complex shapes.

    Lithium Metal Battery with Dendrite-Suppressing Coating and Production Method for same

    公开(公告)号:US20230022046A1

    公开(公告)日:2023-01-26

    申请号:US17853909

    申请日:2022-06-29

    Abstract: The present invention provides a lithium metal battery having a lithium metal electrode including a cathode, an anode, a separator positioned between the cathode and the anode, an electrolyte, and a lithium metal negative electrode. The lithium metal negative electrode includes a lithium reactive metal layer, the lithium reactive metal layer being formed on a support conductive layer. A dendrite-suppressing coating is formed over the lithium reactive metal layer; the dendrite-suppressing coating is a displacement-reacted metal including silver reacted from decomposition of a silver salt and having an interface reaction product formed from a reaction between the silver salt and the lithium reactive metal layer. The interface reaction product is positioned between the displacement-reacted metal layer and the lithium reactive metal layer. The dendrite suppressing coating permits lithium metal ions to permeate the coating to react electrolytically in an overall battery reaction.

    NON-GAS-EVOLVING IN-SITU CURED QUASI SOLID-STATE BATTERIES

    公开(公告)号:US20240304860A1

    公开(公告)日:2024-09-12

    申请号:US18595466

    申请日:2024-03-05

    CPC classification number: H01M10/0565 H01M4/661 H01M2300/0082

    Abstract: A quasi-solid-state battery formed from non-gas evolving in-situ curing of a quasi-solid-state electrolyte that includes a high swelling polymer made from a monomer with good compatibility with liquid electrolytes, and has a good reactivity for facile non-gas evolving in-situ polymerization. The monomer can be based on acrylate polymerization chemistry or an allyl group polymerization chemistry. Non-gas evolving initiators are used for non-gas evolving in-situ polymerization of acrylate or allyl monomer-based QSE. The resulting QSE additionally has high ionic conductivity, allowing for a high battery output, and a wide electrochemical window (stable for lithium metal anode and high-voltage cathodes). The resulting quasi solid electrolyte battery is not only easy to fabricate using conventional battery manufacturing practices, the non-gas evolving in-situ polymerization causes the QSE to be uniformly distributed within the battery, ensuring high-quality, safe battery performance and longevity.

    TEXTILE PRESSURE SENSOR ARRAY AND PRESSURE DISTRIBUTION MAPPING SYSTEM

    公开(公告)号:US20220326099A1

    公开(公告)日:2022-10-13

    申请号:US17714168

    申请日:2022-04-06

    Abstract: A pressure distribution mapping system includes a flexible M×N textile-based pressure sensor array. with first and second electrode textile layers and a piezoresistive fabric layer with a sheet resistance of at least 60 k-ohm/square positioned between the first and second electrode textile layers. Individual pressure sensors are formed by an intersection between a row electrically-conductive path and a column electrically-conductive path along with the portion of the piezoresistive layer positioned at the intersection. A measurement system measures the resistance of each pressure sensor of the pressure sensor array. The measurement system includes a reading module with first op-amps connected to each row and second op-amps connected to each column. Plural switches switch between pressure sensor-enabled and pressure sensor-disabled positions to minimize a bus line crosstalk effect during pressure sensor reading A processor scans each pressure sensor and generates a pressure distribution profile based on a measured resistance of each pressure sensor.

    Layered Structure Battery with Multi-Functional Electrolyte

    公开(公告)号:US20190173099A1

    公开(公告)日:2019-06-06

    申请号:US16207221

    申请日:2018-12-03

    Abstract: The present invention provides a thin, bendable, printed, layered primary battery structure without a battery separator. The battery includes a first layer including a printed positive electrode. A second layer includes a negative electrode material which may be a printed negative electrode or a metal foil negative electrode. An adhesive, UV-curable intermediate layer is adhered to the first layer on a first side of the intermediate layer and is adhered to the second layer on a second side of the intermediate layer. The intermediate layer includes a water-soluble electroactive material and a water-soluble viscosity-regulating polymer in an amount sufficient to render the intermediate layer adhesive. The intermediate layer also includes a water-insoluble polymer matrix having sufficient rigidity to prevent contact of the first layer and the second layer. A flexible package encases the first, second, and intermediate layers.

Patent Agency Ranking