摘要:
The present invention is directed towards a method of manufacturing a semiconductor memory device arranged of a cross point memory array having memory elements provided between upper and lower electrodes for storage of data. The present invention comprises a lower electrode lines forming step of planarizing each of the lower electrode lines and insulating layers provided on both sides of the lower electrode line so as to be substantially uniform in the height thus for patterning the lower electrode lines, a memory element layer depositing step of depositing on the lower electrode lines a memory element layer for the memory elements, and an annealing step of annealing with heat treatment either between the lower electrode lines forming step and the memory element layer depositing step or after the memory element layer depositing step so that any damages caused by the polishing of the surface of the lower electrode lines can be eliminated.
摘要:
A semiconductor memory device having a cross point structure includes a plurality of upper electrodes arranged to extend in one direction, and a plurality of lower electrodes arranged to extend in another direction at a right angle to the one direction of the upper electrodes. Memory materials are provided between the upper electrodes and the lower electrodes for storage of data. The memory materials are made of a perovskite material and arranged at the lower electrodes side of the corresponding upper electrode extending along the corresponding upper electrode.
摘要:
A semiconductor memory device having a cross point structure includes a plurality of upper electrodes arranged to extend in one direction, and a plurality of lower electrodes arranged to extend in another direction at a right angle to the one direction of the upper electrodes. Memory materials are provided between the upper electrodes and the lower electrodes for storage of data. The memory materials are made of a perovskite material and arranged at the lower electrodes side of the corresponding upper electrode extending along the corresponding upper electrode.
摘要:
A semiconductor memory device having a cross point structure includes a plurality of upper electrodes arranged to extend in one direction, and a plurality of lower electrodes arranged to extend in another direction at a right angle to the one direction of the upper electrodes. Memory materials are provided between the upper electrodes and the lower electrodes for storage of data. The memory materials are made of a perovskite material and arranged at the lower electrodes side of the corresponding upper electrode extending along the corresponding upper electrode.
摘要:
A semiconductor memory device having a cross point structure includes a plurality of upper electrodes arranged to extend in one direction, and a plurality of lower electrodes arranged to extend in another direction at a right angle to the one direction of the upper electrodes. Memory materials are provided between the upper electrodes and the lower electrodes for storage of data. The memory materials are made of a perovskite material and arranged at the lower electrodes side of the corresponding upper electrode extending along the corresponding upper electrode.
摘要:
A manufacturing method for a variable resistive element according to which a stable switching operation can be achieved with excellent reproducibility is provided. A conductive thin film is deposited on a semiconductor substrate and patterned to a predetermined form, and after that, a first interlayer insulating film is deposited. An opening is then created in a predetermined location on the first interlayer insulating film in such a manner that the upper surface of the conductive thin film is exposed and the thickness of the conductive thin film formed at the bottom of this opening is reduced through processing, and after that, an oxidation process is carried out on the periphery of the exposed conductive thin film. As a result, a variable resistor film is formed in the peripheral region of the opening, and this variable resistor film divides the conductive thin film into a first electrode and a second electrode.
摘要:
A semiconductor memory device comprising a variable resistance element having a variable resistor between a first electrode and a second electrode, in which electric resistance is changed by applying a voltage pulse between the electrodes comprises at least one reaction preventing film made of a material having an action of blocking the permeation of a reduction species promoting a reduction reaction of the variable resistor and an oxidation species promoting an oxidation reaction of the variable resistor. This prevents the resistance value of the variable resistance element from fluctuating due to a reduction reaction or an oxidation reaction of the variable resistor caused by hydrogen or oxygen existing in the manufacturing steps, so that a semiconductor memory device having a small variation of the resistance value and having a good controllability can be realized with good repeatability.
摘要:
After forming a capacitor of a stack type ferroelectric memory device by sequentially patterning an upper electrode, a ferroelectric film and a lower electrode formed above an interlayer insulator film, the capacitor is covered with an oxidation barrier layer. After forming the oxidation barrier layer, the in-process memory device is heat treated at a high temperature in an oxygen-containing atmosphere. The oxidation barrier layer prevents the lower electrode of the capacitor and a barrier metal film between the capacitor and the interlayer insulator film from oxidation during heat treatment. Thus, the occurrence of peelings and hillocks in the lower electrode and the barrier metal film is avoided so that a semiconductor memory has good electrical characteristics and high reliability.
摘要:
Provided is a semiconductor memory device that is capable of stably programming with desirable controllability to a desired electric resistance state in a random access programming action and is provided with a variable resistance element. Regardless of a resistance state of a variable resistance element of a memory cell that is a target of a writing action (erasing and programming actions), an erasing voltage pulse for bringing the resistance state of the variable resistance element to an erased state having a lowest resistance value is applied. Thereafter, a programming voltage pulse for bringing the resistance state of the variable resistance element to a desired programmed state is applied to the variable resistance element of the programming action target memory cell. By always applying the programming voltage pulse after having applied the erasing voltage pulse, a plurality of programming voltage pulses being sequentially applied can be avoided.
摘要:
A semiconductor memory device includes a memory cell array where a plurality of memory cells are arranged in a matrix, each of the memory cells serially connecting a two-terminal type memory element and a transistor for selection, a first voltage applying circuit that applies a write voltage pulse to a bit line, and a second voltage applying circuit that applies a precharge voltage to a bit line and a common line. In writing the memory cell, after the second voltage applying circuit has both terminals of the memory cell previously precharged to the same voltage, the first voltage applying circuit applies the write voltage pulse to one terminal of the writing target memory cell via the bit line, and while the write voltage pulse is applied, the second voltage applying circuit maintains the application of the precharge voltage to the other terminal of the memory cell via the common line.