Abstract:
An infrared ray absorbing film is selectively formed on a surface of a silicon carbide semiconductor substrate in a predetermined area. An aluminum film and a nickel film are sequentially formed in this order on the silicon carbide semiconductor substrate in an area excluding the predetermined area in which the infrared ray absorbing film is formed. The silicon carbide semiconductor substrate is thereafter heated using a rapid annealing process with a predetermined heating rate to form an electrode. The rapid annealing process converts the nickel film into a silicide and, with the aluminum film, provides an electrode having ohmic contact.
Abstract:
On a silicon carbide semiconductor substrate, heat treatment is performed after one layer or two or more layers of an oxide film, a nitride film, or an oxynitride film are formed as a gate insulating film. The heat treatment after the gate insulating film is formed is performed for a given period in an atmosphere that includes H2 and H2O without including O2. As a result, hydrogen or hydroxyl groups can be segregated in a limited region that includes the interface of the silicon carbide substrate and the gate insulating film. The width of the region to which the hydrogen or hydroxyl groups is segregated is from 0.5 nm to 10 nm. In such a manner, the interface state density can be lowered and high channel mobility can be realized.
Abstract:
A method of manufacturing a silicon carbide semiconductor device includes forming on a front surface of a silicon carbide substrate of a first conductivity type, a silicon carbide layer of the first conductivity type of a lower concentration; selectively forming a region of a second conductivity type in a surface portion of the silicon carbide layer; selectively forming a source region of the first conductivity type in the region; forming a source electrode electrically connected to the source region; forming a gate insulating film on a surface of the region between the silicon carbide layer and the source region; forming a gate electrode on the gate insulating film; forming a drain electrode on a rear surface of the substrate; forming metal wiring comprising aluminum for the device, the metal wiring being connected to the source electrode; and performing low temperature nitrogen annealing after the metal wiring is formed.
Abstract:
A change in switching time due to temperature change is suppressed. A switching circuitry is provided with a resistance component having opposite characteristics to temperature dependence of a gate current of a power transistor which is switching-controlled by the switching circuitry, and a change in a gate current due to the temperature change is suppressed by a change in the above-described resistance component due to the temperature change.
Abstract:
A semiconductor device includes, on an n-type semiconductor substrate, a power transistor, an n-type transistor, and a p-type transistor on a laminated semiconductor substrate that laminates an n-type drift layer, a p-type; the power transistor has a trench gate electrode penetrating through the base layer; the p-type transistor is formed in an n-type well region formed in the base layer, and the n-type transistor is formed in a p-type well region further formed in the base layer or n-type well region; and a p-type impurity concentration of the buried channel region of the p-type transistor is equal to a p-type impurity concentration of the base layer.