摘要:
A semiconductor structure is provided that includes a Vt stabilization layer between a gate dielectric and a gate electrode. The Vt stabilization layer is capable of stabilizing the structure's threshold voltage and flatband voltage to a targeted value and comprises a nitrided metal oxide, or a nitrogen-free metal oxide, with the proviso that when the Vt stabilization layer comprises a nitrogen-free metal oxide, at least one of the semiconductor substrate or the gate dielectric includes nitrogen. The present invention also provides a method of fabricating such a structure.
摘要:
A method of forming a CMOS structure, and the device produced therefrom, having improved threshold voltage and flatband voltage stability. The inventive method includes the steps of providing a semiconductor substrate having an nFET region and a pFET region; forming a dielectric stack atop the semiconductor substrate comprising an insulating interlayer atop a high k dielectric; removing the insulating interlayer from the nFET region without removing the insulating interlayer from the pFET region; and providing at least one gate stack in the pFET region and at least one gate stack in the nFET region. The insulating interlayer can be AlN or AlOxNy. The high k dielectric can be HfO2, hafnium silicate or hafnium silicon oxynitride. The insulating interlayer can be removed from the nFET region by a wet etch including a HCl/H2O2 peroxide solution.
摘要:
The present invention provides a semiconductor structure comprising a semiconductor substrate having source and drain diffusion regions located therein, the source and drain diffusion regions being separated by a device channel; and a gate stack located on top of the device channel, the gate stack comprising a high-k gate dielectric, an insulating interlayer and a fully silicided metal gate conductor, the insulating interlayer located between the high-k gate dielectric and the fully silicided metal gate conductor, wherein the insulating interlayer is capable of stabilizing threshold voltage and flatband voltage of the semiconductor structure to a targeted value.
摘要:
A method of forming a CMOS structure, and the device produced therefrom, having improved threshold voltage and flatband voltage stability. The inventive method includes the steps of providing a semiconductor substrate having an nFET region and a pFET region; forming a dielectric stack atop the semiconductor substrate comprising an insulating interlayer atop a high k dielectric; removing the insulating interlayer from the nFET region without removing the insulating interlayer from the pFET region; and providing at least one gate stack in the pFET region and at least one gate stack in the nFET region. The insulating interlayer can be AlN or AlOxNy. The high k dielectric can be HfO2, hafnium silicate or hafnium silicon oxynitride. The insulating interlayer can be removed from the nFET region by a wet etch including a HCl/H2O2 peroxide solution.
摘要翻译:一种形成CMOS结构的方法及其制造的器件,具有改进的阈值电压和平带电压稳定性。 本发明的方法包括提供具有nFET区和pFET区的半导体衬底的步骤; 在所述半导体衬底上形成包括在高k电介质顶上的绝缘夹层的电介质叠层; 从nFET区域去除绝缘中间层而不从pFET区域去除绝缘中间层; 以及在pFET区域中提供至少一个栅极堆叠以及在nFET区域中提供至少一个栅极堆叠。 绝缘中间层可以是AlN或AlO x N y Y。 高k电介质可以是HfO 2,硅酸铪或铪硅氮氧化物。 可以通过包含HCl / H 2 O 2 O 2过氧化物溶液的湿蚀刻从nFET区域去除绝缘中间层。
摘要:
An insulating interlayer for use in complementary metal oxide semiconductor (CMOS) that prevents unwanted shifts in threshold voltage and flatband voltage is provided. The insulating interlayer is located between a gate dielectric having a dielectric constant of greater than 4.0 and a Si-containing gate conductor. The insulating interlayer of the present invention is any metal nitride, that optionally may include oxygen, that is capable of stabilizing the threshold and flatband voltages. In a preferred embodiment, the insulating interlayer is aluminum nitride or aluminum oxynitride and the gate dielectric is hafnium oxide, hafnium silicate or hafnium silicon oxynitride. The present invention is particularly useful in stabilizing the threshold and flatband voltage of p-type field effect transistors.
摘要:
A semiconductor structure, particularly a pFET, which includes a dielectric material that has a dielectric constant of greater than that of SiO2 and a Ge or Si content of greater than 50% and at least one other means for threshold/flatband voltage tuning by material stack engineering is provided. The other means contemplated in the present invention include, for example, utilizing an insulating interlayer atop the dielectric for charge fixing and/or by forming an engineered channel region. The present invention also relates to a method of fabricating such a CMOS structure.
摘要:
The present invention provides a gate stack structure that has high mobilites and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2/V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要翻译:本发明提供具有高移动性和低界面电荷的栅堆叠结构,以及包括其的半导体器件,即金属氧化物半导体场效应晶体管(MOSFET)。 在半导体器件中,本发明的栅极堆叠结构位于衬底和覆盖栅极导体之间。 本发明还提供一种制造本发明的栅叠层结构的方法,其中采用了高温退火工艺(大约800℃)。 在本发明中使用的高温退火提供了一种栅堆叠结构,其具有通过电荷泵浦测量的约8×10 10电荷/ cm 2的界面态密度或 更少,约250cm 2 / Vs或更高的峰迁移率,并且在约6.0×10 12反转电荷/ cm 2处基本上没有迁移率降解, 或更大。
摘要:
The present invention is directed to CMOS structures that include at least one nMOS device located on one region of a semiconductor substrate; and at least one pMOS device located on another region of the semiconductor substrate. In accordance with the present invention, the at least one nMOS device includes a gate stack comprising a gate dielectric, a low workfunction elemental metal having a worfunction of less than 4.2 eV, an in-situ metallic capping layer, and a polysilicon encapsulation layer and the at least one pMOS includes a gate stack comprising a gate dielectric, a high workfunction elemental metal having a workfunction of greater than 4.9 eV, a metallic capping layer, and a polysilicon encapsulation layer. The present invention also provides methods of fabricating such a CMOS structure.
摘要:
The present invention provides a gate stack structure that has high mobilites and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2/V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
摘要翻译:本发明提供具有高移动性和低界面电荷的栅堆叠结构,以及包括其的半导体器件,即金属氧化物半导体场效应晶体管(MOSFET)。 在半导体器件中,本发明的栅极堆叠结构位于衬底和覆盖栅极导体之间。 本发明还提供一种制造本发明的栅叠层结构的方法,其中采用了高温退火工艺(约800℃)。 在本发明中使用的高温退火提供了一种栅堆叠结构,其具有通过电荷泵浦测量的约8×10 10电荷/ cm 2的界面态密度或 更少,约250cm 2 / Vs或更高的峰迁移率,并且在约6.0×10 12反转电荷/ cm 2处基本上不会迁移率降低, 或更大。
摘要:
A data storage element (and method of forming the same) includes a substrate comprising a semiconductor material, a metal oxide layer including an electrically insulating rare earth metal oxide disposed upon a surface of the substrate, a conductive material disposed upon the metal oxide layer, a first electrode electrically connected to the conductive material, and a second electrode connected to the substrate.