Abstract:
Provided is a laminate comprising a thermoplastic resin substrate and a polyvinyl alcohol based resin layer formed on the thermoplastic resin substrate, being used to form a polarizing film of the polyvinyl alcohol based resin layer treated with a post-process comprising at least a dyeing step of dyeing the polyvinyl alcohol based resin layer with a dichroic material, the post-process being performed after the polyvinyl alcohol based resin layer formed on the thermoplastic resin substrate is stretched together with the thermoplastic resin substrate, wherein the polyvinyl alcohol based resin layer comprises a polyvinyl alcohol based resin and a halide.
Abstract:
A pressure-sensitive adhesive layer-attached polarizing film of the invention includes: a polarizing film; and a pressure-sensitive adhesive layer provided on the polarizing film, wherein the polarizing film includes a polarizer and a transparent protective film provided on only one side of the polarizer, the pressure-sensitive adhesive layer is provided on a side of the polarizer where the transparent protective film is absent, and the pressure-sensitive adhesive layer is made of a pressure-sensitive adhesive composition containing a (meth)acryl-based polymer (A) and an alkali metal salt (B). The pressure-sensitive adhesive layer-attached polarizing film has a pressure-sensitive adhesive layer with an antistatic function and satisfactory durability and whose optical properties are less likely to be degraded.
Abstract:
A pressure-sensitive adhesive layer-attached polarizing film of the invention includes: a polarizing film; and a pressure-sensitive adhesive layer provided on the polarizing film, wherein the polarizing film includes a polarizer and a transparent protective film provided on only one side of the polarizer, the pressure-sensitive adhesive layer is provided on a side of the polarizer where the transparent protective film is absent, and the pressure-sensitive adhesive layer is made of a pressure-sensitive adhesive composition containing a (meth)acryl-based polymer (A) and an alkali metal salt (B). The pressure-sensitive adhesive layer-attached polarizing film has a pressure-sensitive adhesive layer with an antistatic function and satisfactory durability and whose optical properties are less likely to be degraded.
Abstract:
A polarizing plate according to an embodiment of the present invention includes a laminate produced by laminating a resin substrate having a percentage of water absorption of 0.2% or more and 3.0% or less and a glass transition temperature of 60° C. or more on one side of a polyvinyl alcohol-based film having a thickness of 30 μm or less, the laminate being subjected to dyeing treatment and stretching treatment including at least in-boric-acid-solution stretching. The polyvinyl alcohol-based film serves as a polarizing film and the resin substrate serves as a protective film for the polarizing film.
Abstract:
A laminate according to an embodiment of the present invention includes: a resin substrate; a polyvinyl alcohol-based resin layer formed on one side of the resin substrate; and an antistatic layer formed on another side of the resin substrate and comprising a binder resin and a conductive material. The binder resin includes a polyurethane-based resin; the antistatic layer has an arithmetic average surface roughness Ra of 10 nm or more; and the conductive material includes a conductive polymer.
Abstract:
The present invention provides a thin polarizing film which has only a small environmental load and has excellent optical characteristics.The thin polarizing film is produced by forming a polyvinyl alcohol-based resin layer on a thermoplastic resin substrate. The thin polarizing film has a thickness of 10 μm or less, a single axis transmittance of 42.0% or more, a polarization degree of 99.95% or more, and an iodine content of 17.6 grams per 400×700 square millimeters or less, which is measured by an ion chromatography method.
Abstract:
A method of manufacturing a polarizing plate according to an embodiment of the present invention includes: stretching and dyeing a laminate having a resin substrate and a polyvinyl alcohol-based resin layer formed on at least one side of the resin substrate to produce a polarizing film on the resin substrate; laminating an optically functional film on the laminate on a polarizing film side to produce an optically functional film laminate; and peeling the resin substrate from the optically functional film laminate. The peeling is performed so that an angle α formed between a surface of the optically functional film laminate immediately before the peeling and a peeling direction of the resin substrate is smaller than an angle β formed between the surface of the optically functional film laminate immediately before the peeling and a peeling direction of the polarizing film.
Abstract:
A resin film according to an embodiment of the present invention includes: a substrate film; and an antistatic layer formed on one side of the substrate film and including a binder resin and a conductive material. The binder resin includes a polyurethane-based resin; the antistatic layer has an arithmetic average surface roughness Ra of 10 nm or more; and the conductive material includes a conductive polymer.
Abstract:
As the polarizing fiber of the present invention, the cross sectional form perpendicular to the longitudinal direction has a sea-island structure, and the cross sectional form is continuously made up in the longitudinal direction. A resin (sea component) that constitutes the sea region of the sea-island structure comprises a dichroic dye, and a resin (island component) that constitutes the island regions of the sea-island structure is a transparent resin. The polarizing fiber of the present invention may be used as a forming material of a polarizer, for example. By using the above polarizing fiber, a polarizer wherein unevenness of the transmittance is small and cracks are less generated may be formed.
Abstract:
The present invention pertains to a one-side-protected polarizing film having a transparent protective film on only one surface of a polarizer, wherein: the polarizer contains a polyvinyl alcohol-based resin, has a thickness of 10 μm or less, and is designed to have a single-body transmittance T and a polarization degree P representing optical properties satisfying the condition of the following formula: P>−(100.929T−42.4−1)×100 (provided that T