摘要:
An antireflection film includes a base resin and an additive resin, the additive resin having a dry etching rate higher than that of the base resin. A photoresist pattern is formed and the antireflection film is selectively etched using the photoresist pattern as a mask. The molecular weight and weight percent of the additive resin are selected to provide an etching rate for the antireflection film that permits selective removal of the antireflection film while leaving an effective amount of the photoresist.
摘要:
The invention relates to a photomask for use in a thermal flow process in which: a photomask is prepared in which a plurality of exposure openings are formed; a resist is applied to the surface of a layer of a semiconductor integrated circuit that is to undergo processing; this resist is patterned by an exposure process through the photomask to form a plurality of openings in the resist that correspond to each of the exposure openings; and the patterned resist is then heated to cause each of the openings to shrink; wherein at least a portion of exposure openings among the plurality of exposure openings are formed in shapes that compensate for anisotropic deformation that occurs in the openings when the patterned resist is heated to cause each of the openings to shrink. Since the openings that are formed in the resist are provided in advance with shapes that compensate for the deformation that occurs when the openings shrink, these openings attain the proper shape after undergoing shrinking and deformation.
摘要:
The invention relates to a photomask for use in a thermal flow process in which: a photomask is prepared in which a plurality of exposure openings are formed; a resist is applied to the surface of a layer of a semiconductor integrated circuit that is to undergo processing; this resist is patterned by an exposure process through the photomask to form a plurality of openings in the resist that correspond to each of the exposure openings; and the patterned resist is then heated to cause each of the openings to shrink; wherein at least a portion of exposure openings among the plurality of exposure openings are formed in shapes that compensate for anisotropic deformation that occurs in the openings when the patterned resist is heated to cause each of the openings to shrink. Since the openings that are formed in the resist are provided in advance with shapes that compensate for the deformation that occurs when the openings shrink, these openings attain the proper shape after undergoing shrinking and deformation.
摘要:
An anti-reflection structure formed on a gate electrode in a MOSFET device includes a first and second anti-reflection layers sandwiching therebetween a silicon nitride layer. Each of the anti-reflection layers has a two-layer structure including a silicon oxide nitride film and a protective silicon oxide film. The anti-reflection layer structure improves the accuracy of the pattern size for the gate electrode.
摘要:
A capacitor is provided, which makes it easy to increase the opposing area size between the lower and upper electrode in spite of miniaturization, and which ensures a desired capacitance value large enough for stable operation of a semiconductor memory device in spite of miniaturization. The capacitor is comprised of a lower electrode formed over an interlayer dielectric layer of a substrate, an upper electrode, and a dielectric located between the lower and upper electrodes. The lower electrode has a first electrode part and a second electrode part connected to each other. The first electrode part includes a plate-shaped bottom subpart and a sidewall subpart extending upward from the periphery of the bottom subpart. The bottom subpart and the sidewall subpart form an inner space. At least part of the second electrode part is located in the inner space so that a first gap is formed between the bottom subpart and the second electrode part and a second gap is formed between the sidewall subpart and the second electrode part. The upper electrode is opposed to the bottom subpart of the first electrode part of the lower electrode and to the second electrode part thereof in the first gap, and is opposed to the sidewall subpart of the first electrode part of the lower electrode and to the second electrode part thereof in the second gap.
摘要:
The present invention provides a method of forming at least a bottom electrode of a capacitor in a semiconductor device. The method comprises the steps forming a first insulation film on a multilayer structure over a semiconductor substrate; forming at least a contact hole which penetrates through the first insulation film and the multilayer structure to reach a surface of the semiconductor substrate; selectively removing the first insulation film to form mask patterns on the multilayer structure; forming a single conductive film which extends within the at least contact hole and over the multilayer structure as well as cover the mask patterns; forming a second insulation film on the single conductive film; partially removing the second insulation film and the single conductive film over the mask patterns so that tops of the mask patterns are shown; and removing remaining parts of the second insulation film and the mask patterns to form at least a bottom electrode comprising a single conductive layer.
摘要:
The invention relates to the fabrication of a cylindrical storage node in a stacked capacitor cell of DRAM. As is usual, a MOS transistor is fabricated in a silicon substrate, and interlayer insulator and interconnection are formed on the substrate. As an upper interlayer insulator film which serves as an etch stop film, a silicon nitride or silicon oxide film is formed, and this film is overlaid with a planarizing film such as a BPSG film. Then, a contact hole is formed and filled with a conductor to provide a storage node contact. After that the planarizing film is removed, and a cylindrical storage node is formed on the exposed etch stop film. The cylindrical part of the storage node is formed by patterning a relatively thick BPSG film so as to provide a cylindrical wall face, forming a polysilicon sidewall on the cylindrical wall face and then completely removing the BPSG film. At this stage the etch stop film retains sufficient thickness since this film was protected by the planarizing film at the stage of forming the storage node contact. So, no defects such as cavities develop in interlayer insulators. By this method the total thickness of interlayer insulators can be reduced, so that the storage node contact can be formed accurately and reliably.
摘要:
Levenson masks capable of minimizing the effect of optical proximity, and a method for forming a fine pattern using such Levenson masks wherein the Levenson masks have patterns where shielding regions are sandwiched between shifter regions and non-shifter regions respectively. The shifter regions and the non-shifter regions are formed to have predetermined shapes to minimize the effect of optical proximity. Specifically, aperture widths, which are defined as widths of the shifter regions and widths of the non-shifter regions perpendicular to the longitudinal directions of the linear shielding regions, are of a predetermined width for minimizing the effect of optical proximity. The Levenson masks have patterns different from each other and are used for multiple exposures.
摘要:
An anti-reflection structure formed on a gate electrode in a MOSFET device includes a first and second anti-reflection layers sandwiching therebetween a silicon nitride layer. Each of the anti-reflection layers has a two-layer structure including a silicon oxide nitride film and a protective silicon oxide film. The anti-reflection layer structure improves the accuracy of the pattern size for the gate electrode.
摘要:
A method of manufacturing a semiconductor device having capacitor contact holes. The method comprises: forming a first insulating film to cover the gate electrode and the source/drain electrodes; forming a second insulating film on the first insulating film; forming a third insulating film made of material different from that of the second insulating film on the second insulating film; forming a first resist film on the third insulating film; patterning the first resist film by using a first exposure mask to form a patterned first resist film; selectively removing the third insulating film by using the patterned first resist film as a mask; forming a second resist film to cover the patterned first resist film; patterning the second resist film by using a second exposure mask to form a patterned second resist film; selectively removing the first and second insulating films on at least a portion of one of the source/drain regions in each of the element forming regions by using the patterned first and second resist films as a mask to form capacitor contact holes; and forming a conductive film to fill the capacitor contact holes.