Abstract:
A multiple charged particle beam writing apparatus includes a defective pattern data generation circuitry configured to generate defective pattern data of a defective pattern having a shape of the defective region in the writing region; a reverse pattern data generation circuitry configured to generate reverse pattern data by reversing the defective pattern data; a combined-value pixel data generation circuitry configured to generate, for the each pixel, combined-value pixel data by adding a value defined in a reverse pattern pixel data and a value defined in a writing pattern pixel data; and a writing mechanism configured to perform multiple writing, using multiple charged particle beams, on the target object such that the each pixel is irradiated with a beam of a dose corresponding to a value defined in the combined-value pixel data.
Abstract:
According to one aspect of the present invention, a charged particle beam writing apparatus includes correction figure data generation circuitry configured to generate pattern data of a correction figure pattern for correcting a figure portion detected, where the pattern data includes dose information to identify a dose of the correction figure pattern; correction figure pattern data conversion circuitry configured to convert the pattern data of the correction figure pattern into correction figure pattern pixel data defining a value corresponding to a dose for the each pixel, based on pixel setting common to that of the writing pattern pixel data; and combined-value pixel data generation circuitry configured to generate, for the each pixel, combined-value pixel data by adding the value defined in the writing pattern pixel data and the value defined in the correction figure pattern pixel data.
Abstract:
A multi charged particle beam writing method includes calculating first shot positions of multiple beams, each of which includes a distortion amount of an irradiating corresponding beam, in a case of irradiating each beam, based on control grid intervals, calculating first condition positions based on a pre-set condition, each of which is arranged in a corresponding first region surrounded by closest second shot positions of 2×2 in length and width of the first shot positions, calculating, for each of second regions respectively surrounded by closest second condition positions of the first condition positions, an area density of a figure pattern in overlapping with a second region concerned, calculating an irradiation amount or an irradiation time of each beam whose corresponding first shot position is in a corresponding second region, based on an area density, and writing a pattern by irradiating a beam of the calculated irradiation amount or time.
Abstract:
A multi charged particle beam writing method includes performing ON/OFF switching of a beam by an individual blanking system for the beam concerned, for each beam in multi-beams of charged particle beam, with respect to each time irradiation of irradiation of a plurality of times, by using a plurality of individual blanking systems that respectively perform beam ON/OFF control of a corresponding beam in the multi-beams, and performing blanking control, in addition to the performing ON/OFF switching of the beam for the each beam by the individual blanking system, with respect to the each time irradiation of the irradiation of the plurality of times, so that the beam is in an ON state during an irradiation time corresponding to irradiation concerned, by using a common blanking system that collectively performs beam ON/OFF control for a whole of the multi-beams.
Abstract:
A multi charged particle beam writing method includes, shifting a writing position of each corresponding beam to a next writing position by performing another beam deflection of multi charged particle beams, in addition to the beam deflection for a tracking control, while continuing the beam deflection for the tracking control after the maximum writing time has passed; emitting the each corresponding beam in the “on” state to the next writing position having been shifted of the each corresponding beam, during a corresponding writing time while continuing the tracking control; and returning a tracking position such that a next tracking start position is a former tracking start position where the tracking control was started, by resetting the beam deflection for the tracking control after emitting the each corresponding beam to the next writing position having been shifted at least once of the each corresponding beam while continuing the tracking control.
Abstract:
A multiple charged particle beam writing apparatus includes a defective pattern data generation circuitry configured to generate defective pattern data of a defective pattern having a shape of the defective region in the writing region; a reverse pattern data generation circuitry configured to generate reverse pattern data by reversing the defective pattern data; a combined-value pixel data generation circuitry configured to generate, for the each pixel, combined-value pixel data by adding a value defined in a reverse pattern pixel data and a value defined in a writing pattern pixel data; and a writing mechanism configured to perform multiple writing, using multiple charged particle beams, on the target object such that the each pixel is irradiated with a beam of a dose corresponding to a value defined in the combined-value pixel data.
Abstract:
A multi charged particle beam writing method includes performing ON/OFF switching of a beam by an individual blanking system for the beam concerned, for each beam in multi-beams of charged particle beam, with respect to each time irradiation of irradiation of a plurality of times, by using a plurality of individual blanking systems that respectively perform beam ON/OFF control of a corresponding beam in the multi-beams, and performing blanking control, in addition to the performing ON/OFF switching of the beam for the each beam by the individual blanking system, with respect to the each time irradiation of the irradiation of the plurality of times, so that the beam is in an ON state during an irradiation time corresponding to irradiation concerned, by using a common blanking system that collectively performs beam ON/OFF control for a whole of the multi-beams.
Abstract:
A blanking device for multi-beams includes arrayed plural separate blanking systems, each performing blanking control switching a corresponding beam of multi charged particle beams between a beam ON state and a beam OFF state and each including a first electrode, a first potential applying mechanism applying two different potentials selectively to the first electrode for the blanking control, and a second electrode performing blanking deflection of the corresponding beam, the second electrode being grounded and paired with the first electrode, and a potential change mechanism changing a potential of the second electrode from a ground potential to another potential, wherein when a potential of the first electrode included in one of the separate blanking systems is fixed to the ground potential, the potential change mechanism changes the potential of the second electrode corresponding to the first electrode fixed to the ground potential, from the ground potential to the another potential.
Abstract:
According to one aspect of the present invention, a charged particle beam writing apparatus includes correction figure data generation circuitry configured to generate pattern data of a correction figure pattern for correcting a figure portion detected, where the pattern data includes dose information to identify a dose of the correction figure pattern; correction figure pattern data conversion circuitry configured to convert the pattern data of the correction figure pattern into correction figure pattern pixel data defining a value corresponding to a dose for the each pixel, based on pixel setting common to that of the writing pattern pixel data; and combined-value pixel data generation circuitry configured to generate, for the each pixel, combined-value pixel data by adding the value defined in the writing pattern pixel data and the value defined in the correction figure pattern pixel data.
Abstract:
A method for fabricating a blanking aperture array device for multi-beams includes forming, using a substrate over which a first insulating film, a first metal film, a second insulating film, and a second metal film are laminated in order, electrodes and pads on the second metal film, removing a part of the second metal film, removing the second insulating film using, as a mask, the electrodes, the pads, and a remaining part of the second metal film, and forming openings each being between a pair of electrodes, wherein, a part of the second metal film is etched such that some part of it remains in regions each connecting one of the electrodes and one of the pads, and a region in which entire openings are formed except the openings themselves is configured by the electrodes, pads, and first and second metal films such that the insulating film is not exposed.