摘要:
A method of fabricating a semiconductor structure where a low gate resistance is obtained, while simultaneously reducing silicon consumption in the source/drain diffusion regions. The method provides a semiconductor structure having a thin silicide region formed atop source/drain regions and a thicker silicide region formed atop gate regions. The method includes: first forming a structure which includes self-aligned silicide regions atop the source/drain diffusion regions and the gate region. A non-reactive film and a planarizing film are then applied to the structure containing the self-aligned silicide regions and thereafter a thicker silicide region, as compared to the self-aligned silicide region located atop the source/drain regions, is formed on the gate region.
摘要:
A double-gate transistor having front (upper) and back gates that are aligned laterally is provided. The double-gate transistor includes a back gate thermal oxide layer below a device layer; a back gate electrode below a back gate thermal oxide layer; a front gate thermal oxide above the device layer; a front gate electrode layer above the front gate thermal oxide and vertically aligned with the back gate electrode; and a transistor body disposed above the back gate thermal oxide layer, symmetric with the first gate. The back gate electrode has a layer of oxide formed below the transistor body and on either side of a central portion of the back gate electrode, thereby positioning the back gate self-aligned with the front gate. The transistor also includes source and drain electrodes on opposite sides of said transistor body.
摘要:
The inventive method for forming thin channel MOSFETS comprises: providing a structure including at least a substrate having a layer of semiconducting material atop an insulating layer and a gate region formed atop the layer of semiconducting material; forming a conformal oxide film atop the structure; implanting the conformal oxide film; forming a set of spacers atop the conformal oxide film, said set of sidewall spacers are adjacent to the gate region; removing portions of the oxide film, not protected by the set of spacers to expose a region of the semiconducting material; forming raised source/drain regions on the exposed region of the semiconducting material; implanting the raised source/drain regions with a second dopant impurity to form a second dopant impurity region; and annealing a final structure to provide a thin channel MOSFET.
摘要:
In producing complementary sets of metal-oxide-semiconductor (CMOS) field effect transistors, including nFET and pFET), carrier mobility is enhanced or otherwise regulated through the reacting the material of the gate electrode with a metal to produce a stressed alloy (preferably CoSi2, NiSi, or PdSi) within a transistor gate. In the case of both the nFET and pFET, the inherent stress of the respective alloy results in an opposite stress on the channel of respective transistor. By maintaining opposite stresses in the nFET and pFET alloys or silicides, both types of transistors on a single chip or substrate can achieve an enhanced carrier mobility, thereby improving the performance of CMOS devices and integrated circuits.
摘要:
A method of forming a substantially uniform oxide film over surfaces with different level of doping and/or different dopant type is disclosed. In one aspect, a method for forming a uniform oxide spacer on the sidewalls of heavily doped n- and p-type gates is disclosed. The method includes providing a semiconductor substrate having at least two regions with dissimilar dopant characteristics, optionally heating the substrate; and forming a uniform oxide layer over the at least two regions by exposing the substrate to a gaseous mixture including atomic oxygen.
摘要:
Disclosed is a method of protecting a semiconductor shallow trench isolation (STI) oxide from etching, the method comprising lowering, if necessary, the upper surface of said STI oxide to a level below that of adjacent silicon active areas, depositing a nitride liner upon said STI oxide and adjacent silicon active areas in a manner effective in defining a depression above said STI oxide, filling said depression with a protective film, and removing said nitride layer from said adjacent active areas.
摘要:
A double-gate transistor having front (upper) and back gates that are aligned laterally is provided. The double-gate transistor includes a back gate thermal oxide layer below a device layer; a back gate electrode below a back gate thermal oxide layer; a front gate thermal oxide above the device layer: a front gate electrode layer above the front gate thermal oxide and vertically aligned with the back gate electrode; and a transistor body disposed above the back gate thermal oxide layer, symmetric with the first gate. The back gate electrode has a layer of oxide formed below the transistor body and on either side of a central portion of the back gate electrode, thereby positioning the back gate self-aligned with the front gate. The transistor also includes source and drain electrodes on opposite sides of said transistor body.
摘要:
A double-gate transistor has front (upper) and back gates aligned laterally by a process of forming symmetric sidewalls in proximity to the front gate and then oxidizing the back gate electrode at a temperature of at least 1000 degrees for a time sufficient to relieve stress in the structure, the oxide penetrating from the side of the transistor body to thicken the back gate oxide on the outer edges, leaving an effective thickness of gate oxide at the center, aligned with the front gate electrode. Optionally, an angled implant from the sides of an oxide enhancing species encourages relatively thicker oxide in the outer implanted areas and an oxide-retarding implant across the transistor body retards oxidation in the vertical direction, thereby permitting increase of the lateral extent of the oxidation.
摘要:
A MOSFET fabrication methodology and device structure, exhibiting improved gate activation characteristics. The gate doping that may be introduced while the source drain regions are protected by a damascene mandrel to allow for a very high doping in the gate conductors, without excessively forming deep source/drain diffusions. The high gate conductor doping minimizes the effects of electrical depletion of carriers in the gate conductor. The MOSFET fabrication methodology and device structure further results in a device having a lower gate conductor width less than the minimum lithographic minimum image, and a wider upper gate conductor portion width which may be greater than the minimum lithographic image. Since the effective channel length of the MOSFET is defined by the length of the lower gate portion, and the line resistance is determined by the width of the upper gate portion, both short channel performance and low gate resistance are satisfied simultaneously.
摘要:
A method is provided for blocking implants from the gate electrode of an FET device. Form a first planarizing film covering the substrate and the gate electrode stack. The first planarizing film is planarized by either polishing or self-planarizing. For deposition by HDP or use of spin on materials, the film is self-planarizing. Where polishing is required, the first planarizing film is planarized by polishing until the top of the gate electrode is exposed. Etch back the gate electrode below the level of the upper surface of the first planarizing film. Then deposit a blanket layer of a second planarizing film and polish to planarize it to a level exposing the first planarizing film, forming the second planarizing film into an implantation block covering the top surface of the gate. Remove the first planarizing film. Form the counterdoped regions by implanting dopant into the substrate using the implantation block to block implantation of the dopant into the gate electrode. The implantation block protects the gate electrode of the FET from unwanted implanted impurities during implanting of the counterdoped regions. The first planarizing film is composed of a material selected from the group consisting of HDP (high density plasma) silicon oxide and HDP silicon nitride, an interlevel-dielectric layer material including ONO, and photoresist. The gate electrode is composed of a material selected from the group consisting of polysilicon and metal. The second planarizing film comprises a material such as HDP oxide, HDP nitride, and an organic layer including ARCs. The second planarizing film comprises a different material from the first planarizing film.