摘要:
In accordance with embodiments of the present disclosure, a merged filter-transconductor-upconverter for use in a wireless communication device is provided.
摘要:
In accordance with embodiments of the present disclosure, a merged filter-transconductor-upconverter for use in a wireless communication device is provided.
摘要:
In accordance with some embodiments of the present disclosure, a receiver may include a downconverter configured to demodulate a modulated wireless signal to produce a current-mode baseband signal and an analog-to-digital converter (ADC) configured to convert the current-mode baseband signal into a digital output signal. The downconverter may be coupled to the ADC without an intervening filter element.
摘要:
In accordance with some embodiments of the present disclosure, a circuit comprises an input node configured to receive a current-mode input signal and an input stage that includes an input device communicatively coupled to the input node. The input device is configured to receive the input signal at the input node. The circuit additionally comprises bias circuitry communicatively coupled to the input stage and configured to provide a bias current for the input device. The bias circuitry is also configured to remove at least a portion of the bias current from the input signal through a feedback loop associated with the input node such that the input signal is received by the input device with at least a portion of the bias current removed. The circuit further comprises an output stage communicatively coupled to the input stage and configured to output a current-mode output signal based on the input signal.
摘要:
In accordance with some embodiments of the present disclosure an attenuating circuit comprises a balun configured to receive a radio frequency (RF) signal at first and second input ports and configured to output the RF signal. The circuit further comprises an attenuator coupled in parallel with the first and second input ports. A power level of the RF signal output by the balun is based at least partially on an impedance of the attenuator. The attenuator comprises a resistor ladder configured to receive at least a portion of the RF signal and a plurality of switches coupled to the resistor ladder. The plurality of switches are configured to open and close such that the impedance of the attenuator is a function of which switches are open and closed. Therefore, the power of the RF signal is controlled based at least on the opening and closing of the switches.
摘要:
In accordance with embodiments of the present disclosure, a multi-tap integrated transformer may include one or more windings, wherein each of the one or more windings include at least one pair of primary taps for receiving at least one differential input signal, a first pair of secondary taps for outputting a first output signal, and a second pair of secondary taps for outputting a second output signal. The first and second output signals may be based on the at least one differential input signal and a mutual inductance between portions of the one or more windings associated with the at least one pair of primary taps, the first pair of secondary taps, and the second pair of secondary taps.
摘要:
Apparatus are provided for converting a discrete-time analog signal to a continuous-time analog signal. A module comprises a digital-to-analog converter and a filtering arrangement coupled between the digital-to-analog converter and an output node. The digital-to-analog converter converts a digital signal to a discrete-time analog signal. The filtering arrangement comprises a forward signal arrangement having an input configured to receive the discrete-time analog signal and a feedback signal arrangement coupled to the forward signal arrangement. The feedback signal arrangement generates a discrete-time feedback signal at the input of the forward signal arrangement based on one or more continuous-time analog signals from the forward signal arrangement. The forward signal arrangement generates the continuous-time analog output signal at the output node based on a difference between the discrete-time analog signal and the discrete-time feedback signal.
摘要:
Apparatus are provided for continuous-time sigma-delta modulators. A sigma-delta modulator comprises a quantizer configured to convert an analog signal to a digital value. A main feedback arrangement is coupled to the quantizer, and the main feedback arrangement delays the digital value by a first delay period and generates a main feedback signal based on the delayed value. A compensation feedback arrangement is coupled to the quantizer, and compensation feedback arrangement delays the digital value by a second delay period and generates a compensation feedback signal based on the delayed value. A forward signal arrangement produces the analog signal at the quantizer based on an input signal, the main feedback signal, and the compensation feedback signal. The second delay period is independent of and is not influenced by the first delay period, and the second delay period is chosen such that the compensation feedback signal compensates for the first delay period.
摘要:
A method is provided for reducing non-linear effects in an electronic circuit including an amplifier. The method may include receiving a modulated signal at an input of the amplifier, the modulated signal comprising a baseband signal modulated by an oscillator frequency. The method may further include substantially attenuating counter-intermodulation in the modulated signal caused by harmonics of the oscillator frequency and the baseband signal by a resonant circuit. In some embodiments, the resonant circuit may include at least one inductive element and one capacitive element coupled to the at least one inductive element, the at least one inductive element and the at least one capacitive element configured to substantially attenuate counter-intermodulation in the modulated signal.
摘要:
In accordance with some embodiments of the present disclosure, a method may include generating a first current equal to a bandgap voltage divided by a resistance selected to approximately match a process resistance integral to a receiver. The method may further include generating a second current equal to temperature-dependent current multiplied by a predetermined scaling factor. The method may also include subtracting the second current from the first current to generate a bias current. The method may additionally include providing the bias current to the receiver.